121 research outputs found

    Intravascular Stapler for “Open” Aortic Surgery: Preliminary Results

    Get PDF
    NumeraciĂłn errĂłnea en el original

    Robot-assisted laparoscopic surgery of the infrarenal aorta: The early learning curve

    Get PDF
    Background Recently introduced robot-assisted laparoscopic surgery (RALS) facilitates endoscopic surgical manipulation and thereby reduces the learning curve for (advanced) laparoscopic surgery. We present our learning curve with RALS for aortobifemoral bypass grafting as a treatment for aortoiliac occlusive disease. Methods Between February 2002 and May 2005, 17 patients were treated in our institution with robot-assisted laparoscopic aorto-bifemoral bypasses. Dissection was performed laparoscopically and the robot was used to make the aortic anastomosis. Operative time, clamping time, and anastomosis time, as well as blood loss and hospital stay, were used as parameters to evaluate the results and to compare the first eight (group 1) and the last nine patients (group2). Results Total median operative, clamping, and anastomosis times were 365 min (range: 225–589 min), 86 min (range: 25–205 min), and 41 min (range: 22–110 min), respectively. Total median blood loss was 1,000 ml (range: 100–5,800 ml). Median hospital stay was 4 days (range: 3–57 days). In this series 16/18 anastomoses were completed with the use of the robotic system. Three patients were converted (two in group 1, one in group 2), and one patient died postoperatively (group 1). Median clamping and anastomosis times were significantly different between groups 1 and 2 (111 min [range: 85–205 min] versus 57.5 min [range: 25–130 min], p < 0.01 and 74 min [range: 40–110 min] versus 36 min [range: 22–69 min], p < 0.01, respectively) Total operative time, blood loss, and hospital stay showed no significant difference between groups 1 and 2. Conclusions Robot-assisted aortic anastomosis was shown to have a steep learning curve with considerable reduction of clamping and anastomosis times. However, due to a longer learning curve for laparoscopic dissection of the abdominal aorta, operation times were not significantly shortened. Even with robotic assistance, laparoscopic aortoiliac surgery remains a complex procedure

    Modular antibodies reveal DNA damage-induced mono-ADP-ribosylation as a second wave of PARP1 signaling

    Get PDF
    PARP1, an established anti-cancer target that regulates many cellular pathways, including DNA repair signaling, has been intensely studied for decades as a poly(ADP-ribosyl)transferase. Although recent studies have revealed the prevalence of mono-ADP-ribosylation upon DNA damage, it was unknown whether this signal plays an active role in the cell or is just a byproduct of poly-ADP-ribosylation. By engineering SpyTag-based modular antibodies for sensitive and flexible detection of mono-ADP-ribosylation, including fluorescence-based sensors for live-cell imaging, we demonstrate that serine mono-ADP-ribosylation constitutes a second wave of PARP1 signaling shaped by the cellular HPF1/PARP1 ratio. Multilevel chromatin proteomics reveals histone mono-ADP-ribosylation readers, including RNF114, a ubiquitin ligase recruited to DNA lesions through a zinc-finger domain, modulating the DNA damage response and telomere maintenance. Our work provides a technological framework for illuminating ADP-ribosylation in a wide range of applications and biological contexts and establishes mono-ADP-ribosylation by HPF1/PARP1 as an important information carrier for cell signaling. © 2023 The Author(s

    CD34+/M-cadherin+ Bone Marrow Progenitor Cells Promote Arteriogenesis in Ischemic Hindlimbs of ApoE−/− Mice

    Get PDF
    BACKGROUND: Cell-based therapy shows promise in treating peripheral arterial disease (PAD); however, the optimal cell type and long-term efficacy are unknown. In this study, we identified a novel subpopulation of adult progenitor cells positive for CD34 and M-cadherin (CD34âș/M-cadâș BMCs) in mouse and human bone marrow. We also examined the long-lasting therapeutic efficacy of mouse CD34âș/M-cadâș BMCs in restoring blood flow and promoting vascularization in an atherosclerotic mouse model of PAD. METHODS AND FINDINGS: Colony-forming cell assays and flow cytometry analysis showed that CD34âș/M-cadâș BMCs have hematopoietic progenitor properties. When delivered intra-arterially into the ischemic hindlimbs of ApoE⁻/⁻ mice, CD34âș/M-cadâș BMCs alleviated ischemia and significantly improved blood flow compared with CD34âș/M-cad⁻ BMCs, CD34⁻/M-cadâș BMCs, or unselected BMCs. Significantly more arterioles were seen in CD34âș/M-cadâș cell-treated limbs than in any other treatment group 60 days after cell therapy. Furthermore, histologic assessment and morphometric analyses of hindlimbs treated with GFPâș CD34âș/M-cadâș cells showed that injected cells incorporated into solid tissue structures at 21 days. Confocal microscopic examination of GFPâș CD34âș/M-cadâș cell-treated ischemic legs followed by immunostaining indicated the vascular differentiation of CD34âș/M-cadâș progenitor cells. A cytokine antibody array revealed that CD34âș/M-cadâș cell-conditioned medium contained higher levels of cytokines in a unique pattern, including bFGF, CRG-2, EGF, Flt-3 ligand, IGF-1, SDF-1, and VEGFR-3, than did CD34âș/M-cad⁻ cell-conditioned medium. The proangiogenic cytokines secreted by CD34âș/M-cadâș cells induced oxygen- and nutrient-depleted endothelial cell sprouting significantly better than CD34âș/M-cad⁻ cells during hypoxia. CONCLUSION: CD34âș/M-cadâș BMCs represent a new progenitor cell type that effectively alleviates hindlimb ischemia in ApoE⁻/⁻ mice by consistently improving blood flow and promoting arteriogenesis. Additionally, CD34âș/M-cadâș BMCs contribute to microvascular remodeling by differentiating into vascular cells and releasing proangiogenic cytokines and growth factors

    Rare variants in BNC2 are implicated in autosomal-dominant congenital lower urinary-tract obstruction

    Get PDF
    Congenital lower urinary-tract obstruction (LUTO) is caused by anatomical blockage of the bladder outflow tract or by functional impairment of urinary voiding. About three out of 10,000 pregnancies are affected. Although several monogenic causes of functional obstruction have been defined, it is unknown whether congenital LUTO caused by anatomical blockage has a monogenic cause. Exome sequencing in a family with four affected individuals with anatomical blockage of the urethra identified a rare nonsense variant (c.2557C>T [p.Arg853(∗)]) in BNC2, encoding basonuclin 2, tracking with LUTO over three generations. Re-sequencing BNC2 in 697 individuals with LUTO revealed three further independent missense variants in three unrelated families. In human and mouse embryogenesis, basonuclin 2 was detected in lower urinary-tract rudiments. In zebrafish embryos, bnc2 was expressed in the pronephric duct and cloaca, analogs of the mammalian lower urinary tract. Experimental knockdown of Bnc2 in zebrafish caused pronephric-outlet obstruction and cloacal dilatation, phenocopying human congenital LUTO. Collectively, these results support the conclusion that variants in BNC2 are strongly implicated in LUTO etiology as a result of anatomical blockage

    Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment—Sources, Risks, Biodegradation

    Get PDF
    Recently, the increased use of monocyclic non-steroidal anti-inflammatory drugs has resulted in their presence in the environment. This may have potential negative effects on living organisms. The biotransformation mechanisms of monocyclic nonsteroidal anti-inflammatory drugs in the human body and in other mammals occur by hydroxylation and conjugation with glycine or glucuronic acid. Biotransformation/biodegradation of monocyclic non-steroidal anti-inflammatory drugs in the environment may be caused by fungal or bacterial microorganisms. Salicylic acid derivatives are degraded by catechol or gentisate as intermediates which are cleaved by dioxygenases. The key intermediate of the paracetamol degradation pathways is hydroquinone. Sometimes, after hydrolysis of this drug, 4- aminophenol is formed, which is a dead-end metabolite. Ibuprofen is metabolized by hydroxylation or activation with CoA, resulting in the formation of isobutylocatechol. The aim of this work is to attempt to summarize the knowledge about environmental risk connected with the presence of over-the-counter antiinflammatory drugs, their sources and the biotransformation and/or biodegradation pathways of these drugs
    • 

    corecore