32 research outputs found

    Prostate cancer and body size at different ages: an Italian multicentre case–control study

    Get PDF
    We investigated the influence of anthropometric measures at diagnosis and at different ages on prostate cancer risk using an Italian multicentre case-control study conducted between 1991 and 2002 of 1294 histologically confirmed cases and 1451 controls admitted to the same network of hospitals for acute non-neoplastic conditions. Height, weight, body mass index (BMI), waist-to-hip ratio, lean body mass 1 year before diagnosis/interview were not significantly associated with risk. However, a positive association with high BMI at age 30 years was found (odds ratio=1.2 for BMI> or =24.7 vs <22.7) and: for less differentiated prostate cancer, with BMI 1 year before diagnosis/interview. This study supports possible relationships between high body mass in young adulthood, and a tendency to high weight throughout adult life, and the risk of prostate cancer

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF

    Non-randomness of the anatomical distribution of tumors

    Get PDF
    Background: Why does a tumor start where it does within an organ? Location is traditionally viewed as a random event, yet the statistics of the location of tumors argues against this being a random occurrence. There are numerous examples including that of breast cancer. More than half of invasive breast cancer tumors start in the upper outer quadrant of the breast near the armpit, even though it is estimated that only 35 to 40% of breast tissue is in this quadrant. This suggests that there is an unknown microenvironmental factor that significantly increases the risk of cancer in a spatial manner and that is not solely due to genes or toxins. We hypothesize that tumors are more prone to form in healthy tissue at microvascular ‘hot spots’ where there is a high local concentration of microvessels providing an increased blood flow that ensures an ample supply of oxygen, nutrients, and receptors for growth factors that promote the generation of new blood vessels. Results: To show the plausibility of our hypothesis, we calculated the fractional probability that there is at least one microvascular hot spot in each region of the breast assuming a Poisson distribution of microvessels in two-dimensional cross sections of breast tissue. We modulated the microvessel density in various regions of the breast according to the total hemoglobin concentration measured by near infrared diffuse optical spectroscopy in different regions of the breast. Defining a hot spot to be a circle of radius 200 μm with at least 5 microvessels, and using a previously measured mean microvessel density of 1 microvessel/mm2, we find good agreement of the fractional probability of at least one hot spot in different regions of the breast with the observed invasive tumor occurrence. However, there is no reason to believe that the microvascular distribution obeys a Poisson distribution. Conclusions: The spatial location of a tumor in an organ is not entirely random, indicating an unknown risk factor. Much work needs to be done to understand why a tumor occurs where it does. Electronic supplementary material The online version of this article (10.1186/s41236-017-0006-7) contains supplementary material, which is available to authorized users

    The influence of race and ethnicity on the biology of cancer

    No full text
    It is becoming clear that some of the differences in cancer risk, incidence and survival among people of different racial and ethnic backgrounds can be attributed to biological factors. However, identifying these factors and exploiting them to help eliminate cancer disparities has proved challenging. With this in mind, we asked four scientists for their opinions on the most crucial advances, as well as the challenges and what the future holds for this important emerging area of research. © 2012 Macmillan Publishers Limited. All rights reserved
    corecore