6 research outputs found

    Role of TGFβ-induced hyaluronan-CD44 signaling in cancer progression

    No full text
    Hyaluronan, a prevalent glycosaminoglycan of the extracellular space often accumulates in pathological conditions, such as chronic inflammation, infection, and cancer. Hyaluronan synthase HAS2 has been responsible for the synthesis and deposition of hyaluronan in a variety of tumors. We have shown that HAS2 was required for efficient transforming growth factor β (TGFβ)-induced epithelial to mesenchymal transition (EMT), a developmental program which is commandeered by cancer cells to increase their migratory and invasive capacity. In study I, our findings show that long non-coding RNA Has2as has a key role in TGFβ- and Has2-induced breast cancer EMT, migration and acquisition of stemness. Hyaluronan conveys its signaling properties via binding to its cell surface receptor CD44, a well-established stem cell marker in a plethora of tumors. CD44 exerts its signaling properties by interacting with components of the actin cytoskeleton machinery, and by acting as a co-receptor for other receptor tyrosine or threonine kinases impacting their signaling properties. Furthermore, CD44 is subjected to proteolytic cleavage, which eventually liberates the cytoplasmic tail (CD44-ICD). CD44-ICD translocates to the nucleus and alters gene expression. In study II, our findings support that TRAF4/6 mediates pro-tumorigenic effects of CD44, and suggests that inhibitors of CD44 signaling via TRAF4/6 and RAC1 may be beneficial in the treatment of tumor patients. Glioblastoma (GBM) multiforme remains one of the most aggressive and lethal types of brain tumors worldwide with a poor prognosis. In study III, we have initiated studies to elucidate the CD44-dependent molecular mechanisms in GBM progression by knocking out (KO) CD44 by employing CRISPR/Cas9 gene editing in glioma U251MG cells. Aberrant hyaluronan levels are also found during infectious diseases. In study V, we show that in a cohort study of dengue patients, high levels of circulating Dengue Nonstructural Protein 1 (NS1) correlate with high levels of serum hyaluronan. Moreover, we propose that hyaluronan can serve as a prognostic marker for the onset of warning signs during the course of dengue viral infection. Mechanistically, NS1 treatment-induced hyaluronan production contributing to increased vascular permeability. In study IV, we have identified a bifurcating loop during TGFβ signaling, whereby transcriptional induction of NUAK1 serves as a negative checkpoint and NUAK2 induction positively contributes to signaling and terminal differentiation responses to TGFβ activity. In summary, the current thesis provides mechanistic insights into the roles of TGFβ-induced hyaluronan-CD44 interactions in cancer progression.

    Plasma hyaluronan, hyaluronidase activity and endogenous hyaluronidase inhibition in sepsis : an experimental and clinical cohort study

    Get PDF
    Background: Plasma hyaluronan concentrations are increased during sepsis but underlying mechanisms leading to high plasma hyaluronan concentration are poorly understood. In this study we evaluate the roles of plasma hyaluronan, effective plasma hyaluronidase (HYAL) activity and its endogenous plasma inhibition in clinical and experimental sepsis. We specifically hypothesized that plasma HYAL acts as endothelial glycocalyx shedding enzyme, sheddase. Methods: Plasma hyaluronan, effective HYAL activity and HYAL inhibition were measured in healthy volunteers (n = 20), in patients with septic shock (n = 17, day 1 and day 4), in patients with acute pancreatitis (n = 7, day 1 and day 4) and in anesthetized and mechanically ventilated pigs (n = 16). Sixteen pigs were allocated (unblinded, open label) into three groups: Sepsis-1 with infusion of live Escherichia coli (E. coli) 1 x 10(8) CFU/h of 12 h (n = 5), Sepsis-2 with infusion of E. coli 1 x 10(8) CFU/h of 6 h followed by 1 x 10(9) CFU/h of the remaining 6 h (n = 5) or Control with no E. coli infusion (n = 6). Results: In experimental E. coli porcine sepsis and in time controls, plasma hyaluronan increases with concomitant decrease in effective plasma HYAL activity and increase of endogenous HYAL inhibition. Plasma hyaluronan increased in patients with septic shock but not in acute pancreatitis. Effective plasma HYAL was lower in septic shock and acute pancreatitis as compared to healthy volunteers, while plasma HYAL inhibition was only increased in septic shock. Conclusion: Elevated plasma hyaluronan levels coincided with a concomitant decrease in effective plasma HYAL activity and increase of endogenous plasma HYAL inhibition both in experimental and clinical sepsis. In acute pancreatitis, effective plasma HYAL activity was decreased which was not associated with increased plasma hyaluronan concentrations or endogenous HYAL inhibition. The results suggest that plasma HYAL does not act as sheddase in sepsis or pancreatitis.Peer reviewe

    TRAF4/6 Is Needed for CD44 Cleavage and Migration via RAC1 Activation

    No full text
    Simple Summary Tumor cells receive signals from the surrounding extracellular matrix that affect their growth and survival. An important component of the extracellular matrix is the large polysaccharide hyaluronan, which binds and activates certain receptors at the cell surface, including CD44. Activation of CD44 initiates several signaling pathways; one of them involves the cleavage of CD44 by proteases, leading to the release of the intracellular domain of CD44, which after translocation to the nucleus affects the transcription of certain genes. In the present report, we elucidate the mechanism by which CD44 is cleaved, and show that this occurs at an increased rate in stem-like tumor cells grown in spheres. We also show that CD44 cleavage promotes the migration of tumor cells. Since the mechanism we have elucidated promotes tumorigenesis, it is possible that inhibition of this pathway may be beneficial in the treatment of tumor patients. The hyaluronan receptor CD44 can undergo proteolytic cleavage in two steps, leading to the release of its intracellular domain; this domain is translocated to the nucleus, where it affects the transcription of target genes. We report that CD44 cleavage in A549 lung cancer cells and other cells is promoted by transforming growth factor-beta (TGF beta) in a manner that is dependent on ubiquitin ligase tumor necrosis factor receptor-associated factor 4 or 6 (TRAF4 or TRAF6, respectively). Stem-like A549 cells grown in spheres displayed increased TRAF4-dependent expression of CD44 variant isoforms, CD44 cleavage, and hyaluronan synthesis. Mechanistically, TRAF4 activated the small GTPase RAC1. CD44-dependent migration of A549 cells was inhibited by siRNA-mediated knockdown of TRAF4, which was rescued by the transfection of a constitutively active RAC1 mutant. Our findings support the notion that TRAF4/6 mediates pro-tumorigenic effects of CD44, and suggests that inhibitors of CD44 signaling via TRAF4/6 and RAC1 may be beneficial in the treatment of tumor patients

    CD44 Depletion in Glioblastoma Cells Suppresses Growth and Stemness and Induces Senescence

    No full text
    Simple Summary The hyaluronan receptor CD44 has an important role in glioblastoma multiforme (GBM) progression, but the precise mechanisms have not been elucidated. We have analyzed U251MG glioma cells, expressing CD44 or not, and grown in stem cell-like enriched spheres. Our results revealed that CD44 is important for cell growth and stemness, and for the prevention of senescence. Analysis by RNA sequencing revealed that CD44 is important for the interaction with the hyaluronan-enriched microenvironment. In addition, CD44 depletion impairs certain gene signatures, such as those for platelet-derived growth factor (PDGF) isoforms and PDGF receptors, as well as signatures related to hypoxia, glycolysis, and anti-tumor immune responses. Glioblastoma multiforme (GBM) is a lethal brain tumor, characterized by enhanced proliferation and invasion, as well as increased vascularization and chemoresistance. The expression of the hyaluronan receptor CD44 has been shown to correlate with GBM progression and poor prognosis. Here, we sought to elucidate the molecular mechanisms by which CD44 promotes GBM progression by knocking out (KO) CD44, employing CRISPR/Cas9 gene editing in U251MG cells. CD44-depleted cells exhibited an impaired proliferation rate, as shown by the decreased cell numbers, decreased Ki67-positive cell nuclei, diminished phosphorylation of CREB, and increased levels of the cell cycle inhibitor p16 compared to control cells. Furthermore, the CD44 KO cells showed decreased stemness and increased senescence, which was manifested upon serum deprivation. In stem cell-like enriched spheres, RNA-sequencing analysis of U251MG cells revealed a CD44 dependence for gene signatures related to hypoxia, the glycolytic pathway, and G2 to M phase transition. Partially similar results were obtained when cells were treated with the gamma-secretase inhibitor DAPT, which inhibits CD44 cleavage and therefore inhibits the release of the intracellular domain (ICD) of CD44, suggesting that certain transcriptional responses are dependent on CD44-ICD. Interestingly, the expression of molecules involved in hyaluronan synthesis, degradation, and interacting matrix proteins, as well as of platelet-derived growth factor (PDGF) isoforms and PDGF receptors, were also deregulated in CD44 KO cells. These results were confirmed by the knockdown of CD44 in another GBM cell line, U2990. Notably, downregulation of hyaluronan synthase 2 (HAS2) impaired the hypoxia-related genes and decreased the CD44 protein levels, suggesting a CD44/hyaluronan feedback circuit contributing to GBM progression

    Transforming growth factor β (TGFβ) induces NUAK kinase expression to fine-tune its signaling output

    Get PDF
    TGFβ signaling via SMAD proteins and protein kinase pathways up- or down-regulates the expression of many genes and thus affects physiological processes, such as differentiation, migration, cell cycle arrest, and apoptosis during developmental or adult tissue homeostasis. We here report that NUAK family kinase 1 (NUAK1) and NUAK2 are two TGFβ target genes. NUAK1/2 belong to the AMP-activated protein kinase (AMPK) family, whose members control central and protein metabolism, polarity and overall cellular homeostasis. We found that TGFβ-mediated transcriptional induction of NUAK1 and NUAK2 requires SMAD family members 2, 3 and 4 (SMAD2/3/4) and mitogen activated protein kinase (MAPK) activities, which provided immediate and early signals for the transient expression of these two kinases. Genomic mapping identified an enhancer element within the first intron of the NUAK2 gene that can recruit SMAD proteins, which, when cloned, could confer induction by TGFβ.  Furthermore, NUAK2 formed protein complexes with SMAD3 and the TGFβ type I receptor. Functionally, NUAK1 suppressed and NUAK2 induced TGFβ signaling. This was evident during TGFβ-induced epithelial cytostasis, mesenchymal differentiation and myofibroblast contractility, in which NUAK1 or NUAK2 silencing enhanced or inhibited these responses, respectively. In conclusion, we have identified a bifurcating loop during TGFβ signaling, whereby transcriptional induction of NUAK1 serves as a negative checkpoint and NUAK2 induction positively contributes to signaling and terminal differentiation responses to TGFβ activity

    High levels of serum hyaluronan is an early predictor of dengue warning signs and perturbs vascular integrity

    No full text
    Background: A main pathological feature of severe dengue virus infection is endothelial hyper-permeability. The dengue virus nonstructural protein 1 (NS1) has been implicated in the vascular leakage that characterizes severe dengue virus infection, however, the molecular mechanisms involved are not known. Methods: A cohort of 250 dengue patients has been followed from the onset of symptoms to the recovery phase. Set urn hyaluronan levels and several other clinical parameters were recorded. The effect of NS1 treatment of cultured fibroblasts and endothelial cells on the expressions of hyaluronan synthetic and catabolic enzymes and the hyaluronan receptor CD44, were determined, as have the effects on the formation of hyaluronan-rich matrices and endothelial permeability. Findings: Elevated serum hyaluronan levels (70 ng/ml) during early infection was found to be an independent predictor for occurrence of warning signs, and thus severe dengue fever. High circulating levels of the viral protein NS1, indicative of disease severity, correlated with high concentrations of serum hyaluronan. NS1 exposure decreased the expression of CD44 in differentiating endothelial cells impairing the integrity of vessel-like structures, and promoted the synthesis of hyaluronan in dermal fibroblasts and endothelial cells in synergy with dengue-induced pro-inflammatory mediators. Deposited hyaluronan-rich matrices around cells cultured in vitro recruited CD44-expressing macrophage-like cells, suggesting a mechanism for enhancement of inflammation. In cultured endothelial cells, perturbed hyaluronan-CD44 interactions enhanced endothelial permeability through modulation of VE-cadherin and cytoskeleton re-organization, and exacerbated the NS1-induced disruption of endothelial integrity. Interpretation: Pharmacological targeting of hyaluronan biosynthesis and/or its CD44-mediated signaling may limit the life-threatening vascular leakiness during moderate-to-severe dengue virus infection.
    corecore