17 research outputs found

    Effects of long-range transported air pollution from vegetation fires on daily mortality and hospital admissions in the Helsinki metropolitan area, Finland

    Get PDF
    Introduction: Fine particulate matter (PM2.5) emissions from vegetation fires can be transported over long distances and may cause significant air pollution episodes far from the fires. However, epidemiological evidence on health effects of vegetation-fire originated air pollution is limited, particularly for mortality and cardiovascular outcomes. Objective: We examined association between short-term exposure to long-range transported PM2.5 from vegetation fires and daily mortality due to non-accidental, cardiovascular, and respiratory causes and daily hospital admissions due to cardiovascular and respiratory causes in the Helsinki metropolitan area, Finland. Methods: Days significantly affected by smoke from vegetation fires between 2001 and 2010 were identified using air quality measurements at an urban background and a regional background monitoring station, and modelled data on surface concentrations of vegetation-fire smoke. Associations between daily PM2.5 concentration and health outcomes on i) smoke-affected days and ii) all other days (i.e. non smoke days) were analysed using Poisson time series regression. All statistical models were adjusted for daily temperature and relative humidity, influenza, pollen, and public holidays. Results: On smoke-affected days, 10 mu g/m(3) increase in PM2.5 was associated with a borderline statistically significant increase in cardiovascular mortality among total population at a lag of three days (12.4%, 95% CI -0.2% to 26.5%), and among the elderly (>= 65 years) following same-day exposure (13.8%, 95% CI -0.6% to 30.4%) and at a lag of three days (11.8%, 95% CI -2.2% to 27.7%). Smoke day PM2.5 was not associated with non-accidental mortality or hospital admissions due to cardiovascular causes. However, there was an indication of a positive association with hospital admissions due to respiratory causes among the elderly, and admissions due to chronic obstructive pulmonary disease or asthma among the total population. In contrast, on non-smoke days PM2.5 was generally not associated with the health outcomes, apart from suggestive small positive effects on non-accidental mortality at a lag of one day among the elderly and hospital admissions due to all respiratory causes following same-day exposure among the total population. Conclusions: Our research provides suggestive evidence for an association of exposure to long-range transported PM2.5 from vegetation fires with increased cardiovascular mortality, and to a lesser extent with increased hospital admissions due to respiratory causes. Hence, vegetation-fire originated air pollution may have adverse effects on public health over a distance of hundreds to thousands of kilometres from the fires. (C) 2016 The Authors. Published by Elsevier Inc.Peer reviewe

    Ilmanvaihto- ja jäähdytysjärjestelmien resilienssi lämpöaaltojen ja hengitystieinfektioiden suhteen : Uudis- ja korjausrakennusten teknisten ratkaisujen toiminta muuttuvissa olosuhteissa

    Get PDF
    Tutkimuksessa tehtiin laskennallisia tarkasteluja helleaaltojen vaikutuksista sisälämpötilaan sekä kenttämittauksia ja virtaussimulointeja ilmanvaihdon mitoituksen merkityksestä hengitystieinfektioiden torjunnassa. Lisäksi arvioitiin korkeiden lämpötilojen terveyshaittoja sekä influenssaviruksen terveysvaikutuksien ja koronapandemian merkitystä Suomen ylikuolleisuuteen. Passiivisilla auringonsuojaratkaisuilla ja ilmanvaihdon tehostuksella voidaan vähentää rakennusten ylilämpenemistä, mutta ne eivät yksistään riitä torjumaan sitä. Helleaalloista aiheutuu Suomessa vuosittain keskimäärin noin 110 ennenaikaista kuolemaa ja 170 sairaalahoitojaksoa, ja tulevaisuudessa haitat voivat moninkertaistua. Asuntojen ylilämpenemisen torjuntatoimien avulla on mahdollista ehkäistä merkittävä osuus vakavista terveyshaitoista. Nykyiset ilmavirrat ovat opetustiloissa ja kuntosalissa riittäviä hengitysinfektioriskin hallintaan. Avotoimistossa noin 20 %:a pienempi henkilömäärä voidaan nähdä järkevänä ratkaisuna epidemiatilanteessa. Hengitystieinfektiot ovat yleisin lyhyiden työstä poissaolojen syy Suomessa ja ne aiheuttavat sekä työnantajille että yhteiskunnalle kustannuksia sairauspoissaoloina, lisääntyneinä terveydenhuollon menoina ja suurentuneena kuolleisuutena.Tämä julkaisu on toteutettu osana valtioneuvoston selvitys- ja tutkimussuunnitelman toimeenpanoa. (tietokayttoon.fi) Julkaisun sisällöstä vastaavat tiedon tuottajat, eikä tekstisisältö välttämättä edusta valtioneuvoston näkemystä

    Heat, heatwaves and cardiorespiratory hospital admissions in Helsinki, Finland.

    No full text
    Background: There is a lack of knowledge concerning the effects of ambient heat exposure on morbidity in Northern Europe. Therefore, this study aimed to evaluate the relationships of daily summertime temperature and heatwaves with cardiorespiratory hospital admissions in the Helsinki metropolitan area, Finland. Methods: Time series models adjusted for potential confounders, such as air pollution, were used to investigate the associations of daily temperature and heatwaves with cause-specific cardiorespiratory hospital admissions during summer months of 2001-2017. Daily number of hospitalizations was obtained from the national hospital discharge register and weather information from the Finnish Meteorological Institute. Results: Increased daily temperature was associated with a decreased risk of total respiratory hospital admissions and asthma. Heatwave days were associated with 20.5% (95% CI: 6.9, 35.9) increased risk of pneumonia admissions and during long or intense heatwaves also with total respiratory admissions in the oldest age group (>= 75 years). There were also suggestive positive associations between heatwave days and admissions due to myocardial infarction and cerebrovascular diseases. In contrast, risk of arrhythmia admissions decreased 20.8% (95% CI: 8.0, 31.8) during heatwaves. Conclusions: Heatwaves, rather than single hot days, are a health threat affecting morbidity even in a Northern climate

    Low temperature, cold spells, and cardiorespiratory hospital admissions in Helsinki, Finland.

    No full text
    There is only limited scientific evidence with varying results on the association between hospital admissions and low ambient temperatures. Furthermore, there has been no research in Northern Europe on cold-associated morbidity. Therefore, this study investigated the associations of daily wintertime temperature and cold spells with cardiorespiratory hospital admissions in the Helsinki metropolitan area, Finland. Daily number of non-elective hospital admissions for 2001–2017 was obtained from the national hospital discharge register and meteorological data from the Finnish Meteorological Institute. Quasi-Poisson regression models were fitted, controlling for potential confounders such as time trend, weekday, holidays, air pollution, barometric pressure, and influenza. The associations of cold season daily mean ambient temperature and cold spells with hospital admissions were estimated using a penalized distributed lag linear models with 21 lag days. Decreased wintertime ambient temperature was associated with an increased risk of hospitalization for myocardial infarction in the whole population (relative risk [RR] per 1 °C decrease in temperature: 1.017, 95% confidence interval [CI]: 1.002–1.032). An increased risk of hospital admission for respiratory diseases (RR: 1.012, 95% CI: 1.002, 1.022) and chronic obstructive pulmonary disease (RR: 1.031, 95% CI: 1.006, 1.056) was observed only in the ≥ 75 years age group. There was an independent effect of cold spell days only for asthma admissions (RR: 2.348, 95% CI: 1.026, 5.372) in the all-ages group. Cold temperature increases the need for acute hospital care due to myocardial infarction and respiratory causes during winter in a northern climate

    State of the art in benefit-risk analysis: Environmental health

    No full text
    Environmental health assessment covers a broad area: virtually all systematic analysis to support decision making on issues relevant to environment and health. Consequently, various different approaches have been developed and applied for different needs within the broad field. In this paper we explore the plurality of approaches and attempt to reveal the state-of-the-art in environmental health assessment by characterizing and explicating the similarities and differences between them. A diverse, yet concise, set of approaches to environmental health assessment is analyzed in terms of nine attributes: purpose, problem owner, question, answer, process, use, interaction, performance and establishment. The conclusions of the analysis underline the multitude and complexity of issues in environmental health assessment as well as the variety of perspectives taken to address them. In response to the challenges, a tendency towards developing and applying more inclusive, pragmatic and integrative approaches can be identified. The most interesting aspects of environmental health assessment are found among these emerging approaches: (a) increasing engagement between assessment and management as well as stakeholders, (b) strive for framing assessments according to specific practical policy needs, (c) integration of multiple benefits and risks, as well as (d) explicit incorporation of both scientific facts and value statements in assessment. However, such approaches are yet to become established, and many contemporary mainstream environmental health assessment practices can still be characterized as relatively traditional risk assessment
    corecore