94 research outputs found

    Detection and control of individual nuclear spins using a weakly coupled electron spin

    Full text link
    We experimentally isolate, characterize and coherently control up to six individual nuclear spins that are weakly coupled to an electron spin in diamond. Our method employs multi-pulse sequences on the electron spin that resonantly amplify the interaction with a selected nuclear spin and at the same time dynamically suppress decoherence caused by the rest of the spin bath. We are able to address nuclear spins with interaction strengths that are an order of magnitude smaller than the electron spin dephasing rate. Our results provide a route towards tomography with single-nuclear-spin sensitivity and greatly extend the number of available quantum bits for quantum information processing in diamond

    Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock

    Get PDF
    Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions

    A microfabricated sensor for thin dielectric layers

    Full text link
    We describe a sensor for the measurement of thin dielectric layers capable of operation in a variety of environments. The sensor is obtained by microfabricating a capacitor with interleaved aluminum fingers, exposed to the dielectric to be measured. In particular, the device can measure thin layers of solid frozen from a liquid or gaseous medium. Sensitivity to single atomic layers is achievable in many configurations and, by utilizing fast, high sensitivity capacitance read out in a feedback system onto environmental parameters, coatings of few layers can be dynamically maintained. We discuss the design, read out and calibration of several versions of the device optimized in different ways. We specifically dwell on the case in which atomically thin solid xenon layers are grown and stabilized, in cryogenic conditions, from a liquid xenon bath

    Gravitational wave detection with optical lattice atomic clocks

    Get PDF
    We propose a space-based gravitational wave (GW) detector consisting of two spatially separated, drag-free satellites sharing ultrastable optical laser light over a single baseline. Each satellite contains an optical lattice atomic clock, which serves as a sensitive, narrowband detector of the local frequency of the shared laser light. A synchronized two-clock comparison between the satellites will be sensitive to the effective Doppler shifts induced by incident GWs at a level competitive with other proposed space-based GW detectors, while providing complementary features. The detected signal is a differential frequency shift of the shared laser light due to the relative velocity of the satellites, and the detection window can be tuned through the control sequence applied to the atoms’ internal states. This scheme enables the detection of GWs from continuous, spectrally narrow sources, such as compact binary inspirals, with frequencies ranging fromPhysic

    Hybrid Mechanical Systems

    Full text link
    We discuss hybrid systems in which a mechanical oscillator is coupled to another (microscopic) quantum system, such as trapped atoms or ions, solid-state spin qubits, or superconducting devices. We summarize and compare different coupling schemes and describe first experimental implementations. Hybrid mechanical systems enable new approaches to quantum control of mechanical objects, precision sensing, and quantum information processing.Comment: To cite this review, please refer to the published book chapter (see Journal-ref and DOI). This v2 corresponds to the published versio

    A quantum spin transducer based on nano electro-mechancial resonator arrays

    Full text link
    Implementation of quantum information processing faces the contradicting requirements of combining excellent isolation to avoid decoherence with the ability to control coherent interactions in a many-body quantum system. For example, spin degrees of freedom of electrons and nuclei provide a good quantum memory due to their weak magnetic interactions with the environment. However, for the same reason it is difficult to achieve controlled entanglement of spins over distances larger than tens of nanometers. Here we propose a universal realization of a quantum data bus for electronic spin qubits where spins are coupled to the motion of magnetized mechanical resonators via magnetic field gradients. Provided that the mechanical system is charged, the magnetic moments associated with spin qubits can be effectively amplified to enable a coherent spin-spin coupling over long distances via Coulomb forces. Our approach is applicable to a wide class of electronic spin qubits which can be localized near the magnetized tips and can be used for the implementation of hybrid quantum computing architectures

    Systematic study of trace radioactive impurities in candidate construction materials for EXO-200

    Full text link
    The Enriched Xenon Observatory (EXO) will search for double beta decays of 136Xe. We report the results of a systematic study of trace concentrations of radioactive impurities in a wide range of raw materials and finished parts considered for use in the construction of EXO-200, the first stage of the EXO experimental program. Analysis techniques employed, and described here, include direct gamma counting, alpha counting, neutron activation analysis, and high-sensitivity mass spectrometry.Comment: 32 pages, 6 figures. Expanded introduction, added missing table entry. Accepted for publication in Nucl. Instrum. Meth.

    A new twist on the geometry of gravitational plane waves

    Get PDF
    The geometry of twisted null geodesic congruences in gravitational plane wave spacetimes is explored, with special focus on homogeneous plane waves. The role of twist in the relation of the Rosen coordinates adapted to a null congruence with the fundamental Brinkmann coordinates is explained and a generalised form of the Rosen metric describing a gravitational plane wave is derived. The Killing vectors and isometry algebra of homogeneous plane waves (HPWs) are described in both Brinkmann and twisted Rosen form and used to demonstrate the coset space structure of HPWs. The van Vleck-Morette determinant for twisted congruences is evaluated in both Brinkmann and Rosen descriptions. The twisted null congruences of the Ozsvath-Schucking,`anti-Mach' plane wave are investigated in detail. These developments provide the necessary geometric toolkit for future investigations of the role of twist in loop effects in quantum field theory in curved spacetime, where gravitational plane waves arise generically as Penrose limits; in string theory, where they are important as string backgrounds; and potentially in the detection of gravitational waves in astronomy.Comment: 60 pages, 2 figures. Extended version with new material on Rosen geodesics and isometries. Title change
    corecore