2,658 research outputs found
The continuum gauge field-theory model for low-energy electronic states of icosahedral fullerenes
The low-energy electronic structure of icosahedral fullerenes is studied
within the field-theory model. In the field model, the pentagonal rings in the
fullerene are simulated by two kinds of gauge fields. The first one,
non-abelian field, follows from so-called K spin rotation invariance for the
spinor field while the second one describes the elastic flow due to pentagonal
apical disclinations. For fullerene molecule, these fluxes are taken into
account by introducing an effective field due to magnetic monopole placed at
the center of a sphere. Additionally, the spherical geometry of the fullerene
is incorporated via the spin connection term. The exact analytical solution of
the problem (both for the eigenfunctions and the energy spectrum) is found.Comment: 9 pages, 2 figures, submitted to European Physical Journal
From low-rank approximation to an efficient rational Krylov subspace method for the Lyapunov equation
We propose a new method for the approximate solution of the Lyapunov equation
with rank- right-hand side, which is based on extended rational Krylov
subspace approximation with adaptively computed shifts. The shift selection is
obtained from the connection between the Lyapunov equation, solution of systems
of linear ODEs and alternating least squares method for low-rank approximation.
The numerical experiments confirm the effectiveness of our approach.Comment: 17 pages, 1 figure
Nanomechanical displacement detection using coherent transport in ordered and disordered graphene nanoribbon resonators
Graphene nanoribbons provide an opportunity to integrate phase-coherent
transport phenomena with nanoelectromechanical systems (NEMS). Due to the
strain induced by a deflection in a graphene nanoribbon resonator, coherent
electron transport and mechanical deformations couple. As the electrons in
graphene have a Fermi wavelength \lambda ~ a_0 = 1.4 {\AA}, this coupling can
be used for sensitive displacement detection in both armchair and zigzag
graphene nanoribbon NEMS. Here it is shown that for ordered as well as
disordered ribbon systems of length L, a strain \epsilon ~ (w/L)^2 due to a
deflection w leads to a relative change in conductance \delta G/G ~ (w^2/a_0L).Comment: 4 Pages, 4 figure
Development of High-Efficient, Resource-Saving Technical Solutions for Wastewater Treatment in Galvanochemical Sector
This article presents the results of the analysis of samples of a machine-shop for the content of organic components and heavy metal ions. The proposed modernized technological scheme uses modern technological solutions for a machine-shop. Based on the analysis of sites and sewage treatment plants of galvanic production, as well as analysis of the presence of polluting components, technical solutions, which are going to increase the intensification and efficiency of water treatment and water treatment through the use of modern physical and chemical methods, technological methods and wastewater treatment devices have been developed. The introduction of additional sorption modules with activated carbon will reduce the ingress of toxic organic components (DBP, aniline, solvents: acetone, gasoline, ethyl acetate, polymer epoxy compounds, including: epoxy adhesives, polymer filler, epoxy-phenolic, phenolic-rubber and rubber adhesives, release adhesives) into wastewater. A modernized scheme using modern solutions will comply with Mosvodokanal standards.
Keywords: wastewater, water treatment, toxic organic components, heavy metal ion
- …