12,051 research outputs found

    Investigation of single-crystal ferrite thin film

    Get PDF
    Chemical vapor deposition growth of epitaxial single crystal lithium ferrite thin film

    Phase transitions and bubble nucleations for a phi^6 model in curved spacetime

    Get PDF
    Condsidering a massive self-interacting phi ^6 scalar field coupled arbitrarily to a (2+1) dimensional Bianchi type-I spacetime, we evaluate the one-loop effective potential. It is found that phi ^6 potential can be regularized in (2+1) dimensional curved spacetime. A finite expression for the energy-momentum tensor is obtained for this model. Evaluating the finite temperature effective potential, the temperature dependence of phase transitions is studied. The crucial dependence of the phase transitions on the spacetime curvature and on the coupling to gravity are also verified. We also discuss the nucleation of bubbles in a phi ^6 model. It is found that there exists an exact solution for the damped motion of the bubble in the thin wall regime.Comment: 15 pages, 6 figure

    Cumulative luminosity functions of the X-ray point source population in M31

    Full text link
    We present preliminary results from a detailed analysis of the X-ray point sources in the XMM-Newton survey of M31. These sources are expected to be mostly X-ray binaries. We have so far studied 225 of the 535 sources found by automated source detection. Only sources which were present in all three EPIC images were considered. X-ray binaries are identified by their energy spectrum and power density spectrum. Unlike in other surveys we have obtained source luminosities from freely fit emission models. We present uncorrected luminosity functions of the sources analysed so far.Comment: 2 pages, 1 figure. To appear in proceedings of IAUS23

    Leptogenesis implications in models with Abelian family symmetry and one extra real Higgs singlet

    Get PDF
    We show that the neutrino models, as suggested by Low, which have an additional Abelian family symmetry and a real Higgs singlet to the default see-saw do not hinder the possibility of successful thermal leptogenesis. For these models (neglecting radiative effects), we have investigated the situation of strong washout in both the one-flavor approximation and when flavor effects are included. The result is that while such models predict that theta_{13}=0 and that one light neutrino to be massless, they do not modify or provide significant constraints on the typical leptogenesis scenario where the final asymmetry is dominated by the decays of the lightest right-handed neutrinos.Comment: 18 pages, RevTeX4, accepted by Phys. Rev. D. v2: minor corrections, note and 1 ref. added, same content as published versio

    A Spinor Theory of Gravity and the Cosmological Framework

    Get PDF
    Recently we have presented a new formulation of the theory of gravity based on an implementation of the Einstein Equivalence Principle distinct from General Relativity. The kinetic part of the theory - that describes how matter is affected by the modified geometry due to the gravitational field - is the same as in General Relativity. However, we do not consider the metric as an independent field. Instead, it is an effective one, constructed in terms of two fundamental spinor fields Ψ\Psi and Υ\Upsilon and thus the metric does not have a dynamics of its own, but inherits its evolution through its relation with the fundamental spinors. In the first paper it was shown that the metric that describes the gravitational field generated by a compact static and spherically symmetric configuration is very similar to the Schwarzschild metric. In the present paper we describe the cosmological framework in the realm of the Spinor Theory of Gravity

    Potentially Large One-loop Corrections to WIMP Annihilation

    Full text link
    We compute one-loop corrections to the annihilation of non--relativistic particles χ\chi due to the exchange of a (gauge or Higgs) boson ϕ\phi with mass μ\mu in the initial state. In the limit mχμm_\chi \gg \mu this leads to the "Sommerfeld enhancement" of the annihilation cross section. However, here we are interested in the case \mu \lsim m_\chi, where the one--loop corrections are well--behaved, but can still be sizable. We find simple and accurate expressions for annihilation from both SS- and PP-wave initial states; they differ from each other if μ0\mu \neq 0. In order to apply our results to the calculation of the relic density of Weakly Interacting Massive Particles (WIMPs), we describe how to compute the thermal average of the corrected cross sections. We apply this formalism to scalar and Dirac fermion singlet WIMPs, and show that the corrections are always very small in the former case, but can be very large in the latter. Moreover, in the context of the Minimal Supersymmetric Standard Model, these corrections can decrease the relic density of neutralinos by more than 1%, if the lightest neutralino is a strongly mixed state.Comment: 25 pages, 8 figures. Added an appendix showing that the approximation works well in a scalar toy model. To be published in PRD

    Femtolensing and Picolensing by Axion Miniclusters

    Get PDF
    Non-linear effects in the evolution of the axion field in the early Universe may lead to the formation of gravitationally bound clumps of axions, known as ``miniclusters.'' Minicluster masses and radii should be in the range Mmc1012MM_{\rm mc}\sim10^{-12} M_\odot and Rmc1010R_{\rm mc} \sim 10^{10}cm, and in plausible early-Universe scenarios a significant fraction of the mass density of the Universe may be in the form of axion miniclusters. If such axion miniclusters exist, they would have the physical properties required to be detected by ``femtolensing.''Comment: 7 pages plus 2 figures (Fig.1 avalible upon request), LaTe

    XMM-Newton reveals ~100 new LMXBs in M31 from variability studies

    Full text link
    We have conducted a survey of X-ray sources in XMM-Newton observations of M31, examining their power density spectra (PDS) and spectral energy distributions (SEDs). Our automated source detection yielded 535 good X-ray sources; to date, we have studied 225 of them. In particular, we examined the PDS because low mass X-ray binaries (LMXBs) exhibit two distinctive types of PDS. At low accretion rates, the PDS is characterised by a broken power law, with the spectral index changing from ~0 to ~1 at some frequency in the range \~0.01--1 Hz; we refer to such PDS as Type A. At higher accretion rates, the PDS is described by a simple power law; we call these PDS Type B. Of the 225 sources studied to date, 75 exhibit Type A variability, and are almost certainly LMXBs, while 6 show Type B but not Type A, and are likely LMXBs. Of these 81 candidate LMXBs, 71 are newly identified in this survey; furthermore, they are mostly found near the centre of M31. Furthermore, most of the X-ray population in the disc are associated with the spiral arms, making them likely high mass X-ray binaries (HMXBs). In general these HMXBs do not exhibit Type A variability, while many central X-ray sources (LMXBs) in the same luminosity range do. Hence the PDS may distinguish between LMXBs and HMXBs in this luminosity range.Comment: 4 pages, 2 figures. To appear in proceedings of IAUS230: "Populations of High Energy Sources in Galaxies", 14-19 August 2005, Dublin, Eds E.J.A. Meurs and G. Fabbian

    Hill's Equation with Random Forcing Parameters: The Limit of Delta Function Barriers

    Full text link
    This paper considers random Hill's equations in the limit where the periodic forcing function becomes a Dirac delta function. For this class of equations, the forcing strength qkq_k, the oscillation frequency \af_k, and the period are allowed to vary from cycle to cycle. Such equations arise in astrophysical orbital problems in extended mass distributions, in the reheating problem for inflationary cosmologies, and in periodic Schr{\"o}dinger equations. The growth rates for solutions to the periodic differential equation can be described by a matrix transformation, where the matrix elements vary from cycle to cycle. Working in the delta function limit, this paper addresses several coupled issues: We find the growth rates for the 2×22 \times 2 matrices that describe the solutions. This analysis is carried out in the limiting regimes of both large qk1q_k \gg 1 and small qk1q_k \ll 1 forcing strength parameters. For the latter case, we present an alternate treatment of the dynamics in terms of a Fokker-Planck equation, which allows for a comparison of the two approaches. Finally, we elucidate the relationship between the fundamental parameters (\af_k,q_k) appearing in the stochastic differential equation and the matrix elements that specify the corresponding discrete map. This work provides analytic -- and accurate -- expressions for the growth rates of these stochastic differential equations in both the qk1q_k \gg1 and the qk1q_k \ll 1 limits.Comment: 29 pages, 3 figures, accepted to Journal of Mathematical Physic

    Probing the stability of superheavy dark matter particles with high-energy neutrinos

    Full text link
    Two of the most fundamental properties of the dark matter particle, the mass and the lifetime, are only weakly constrained by the astronomical and cosmological evidence of dark matter. We derive in this paper lower limits on the lifetime of dark matter particles with masses in the range 10 TeV-10^15 TeV from the non-observation of ultrahigh energy neutrinos in the AMANDA, IceCube, Auger and ANITA experiments. For dark matter particles which produce neutrinos in a two body or a three body decay, we find that the dark matter lifetime must be longer than O(10^26-10^28) s for masses between 10 TeV and the Grand Unification scale. Finally, we also calculate, for concrete particle physics scenarios, the limits on the strength of the interactions that induce the dark matter decay.Comment: 17 pages, 6 figures; v2: references added, discussion improved, matches the version published at JCA
    corecore