839 research outputs found

    Kinect Range Sensing: Structured-Light versus Time-of-Flight Kinect

    Full text link
    Recently, the new Kinect One has been issued by Microsoft, providing the next generation of real-time range sensing devices based on the Time-of-Flight (ToF) principle. As the first Kinect version was using a structured light approach, one would expect various differences in the characteristics of the range data delivered by both devices. This paper presents a detailed and in-depth comparison between both devices. In order to conduct the comparison, we propose a framework of seven different experimental setups, which is a generic basis for evaluating range cameras such as Kinect. The experiments have been designed with the goal to capture individual effects of the Kinect devices as isolatedly as possible and in a way, that they can also be adopted, in order to apply them to any other range sensing device. The overall goal of this paper is to provide a solid insight into the pros and cons of either device. Thus, scientists that are interested in using Kinect range sensing cameras in their specific application scenario can directly assess the expected, specific benefits and potential problem of either device.Comment: 58 pages, 23 figures. Accepted for publication in Computer Vision and Image Understanding (CVIU

    Using the CRISPR/Cas9 system to understand neuropeptide biology and regulation

    Get PDF
    Funding was provided by a Wellcome Trust ISSF starting grant (105625/Z/14/Z), Medical Research Scotland (PhD-719-2013), GW Pharmaceuticals (PhD-719-2013 - S.5242.001) and the BBSRC (BB/J012343/1).Peer reviewedPublisher PD

    Hand Tracking based on Hierarchical Clustering of Range Data

    Full text link
    Fast and robust hand segmentation and tracking is an essential basis for gesture recognition and thus an important component for contact-less human-computer interaction (HCI). Hand gesture recognition based on 2D video data has been intensively investigated. However, in practical scenarios purely intensity based approaches suffer from uncontrollable environmental conditions like cluttered background colors. In this paper we present a real-time hand segmentation and tracking algorithm using Time-of-Flight (ToF) range cameras and intensity data. The intensity and range information is fused into one pixel value, representing its combined intensity-depth homogeneity. The scene is hierarchically clustered using a GPU based parallel merging algorithm, allowing a robust identification of both hands even for inhomogeneous backgrounds. After the detection, both hands are tracked on the CPU. Our tracking algorithm can cope with the situation that one hand is temporarily covered by the other hand.Comment: Technical Repor

    Recombinase mediated cassette exchange into genomic targets using an adenovirus vector

    Get PDF
    Recombinase mediated cassette exchange (RMCE) is a process in which site-specific recombinases exchange one gene cassette flanked by a pair of incompatible target sites for another cassette flanked by an identical pair of sites. Typically one cassette is present in the host genome, whereas the other gene cassette is introduced into the host cell by chemical or biological means. We show here that the frequency of cassette exchange is dependent on the relative and absolute quantities of the transgene cassette and the recombinase. We were able to successfully modify genomic targets not only by electroporation or chemically mediated gene transfer but also by using an adenovirus vector carrying both the transgene cassette to be inserted and the recombinase coding region. RMCE proceeds efficiently in cells in which the adenovirus vector is able to replicate. In contrast, insufficient quantities of the transgene cassette are produced in cells in which the virus cannot replicate. Additional transfection of the transgene cassette significantly enhances the RMCE frequency. This demonstrates that an RMCE system in the context of a viral vector allows the site directed insertion of a transgene into a defined genomic site

    Decoherence and Entropy Production in Relativistic Nuclear Collisions

    Get PDF
    Short thermalization times of less than 1 fm/c for quark and gluon matter have been suggested by recent experiments at the Relativistic Heavy Ion Collider (RHIC). It has been difficult to justify this rapid thermalization in first-principle calculations based on perturbation theory or the color glass condensate picture. Here, we address the related question of the decoherence of the gluon field, which is a necessary component of thermalization. We present a simplified leading-order computation of the decoherence time of a gluon ensemble subject to an incoming flux of Weizsacker-Williams gluons. We also discuss the entropy produced during the decoherence process and its relation to the entropy in the final state which has been measured experimentally.Comment: 8 pages, 3 figure
    • ā€¦
    corecore