22 research outputs found

    Comparative analysis of the performance of selective and group repeat transmission modes in a transport protocol

    Get PDF
    We propose a model of a virtual connection controlled by a transport protocol in the selective and group failure modes as a Markov chain with discrete time that accounts for the influence of protocol parameters of window size and timeout duration for waiting for acknowledgements, probabilities of distorting segments in individual links of the data transmission path on the throughput of a transport connection. We have analyzed how the throughput of the control procedure depends on protocol parameters, level of errors in communication channels, and round-trip delay. We have proposed a method for choosing protocol parameters

    Key principle of the efficient running, swimming, and flying

    Full text link
    Empirical observations indicate striking similarities among locomotion in terrestrial animals, birds, and fish, but unifying physical grounds are lacking. When applied to efficient locomotion, the analytical mechanics principle of minimum action yields two patterns of mechanical similarity via two explicit spatiotemporal coherent states. In steady locomotory modes, the slow muscles determining maximal optimum speeds maintain universal intrinsic muscular pressure. Otherwise, maximal speeds are due to constant mass-dependent stiffness of fast muscles generating a uniform force field, exceeding gravitation. Being coherent in displacements, velocities and forces, the body appendages of animals are tuned to natural propagation frequency through the state-dependent elastic muscle moduli. Key words: variational principle of minimum action (04.20.Fy), locomotion (87.19.ru), biomechanics (87.85.G-).Comment: Submitted to the Europhysical Letter

    Experimental research of neutron yield and spectrum from deuterium gas-puff z-pinch on the GIT-12 generator at current above 2 MA

    Get PDF
    The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 1012 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons

    Comparative analysis of the performance of selective and group repeat transmission modes in a transport protocol

    No full text
    We propose a model of a virtual connection controlled by a transport protocol in the selective and group failure modes as a Markov chain with discrete time that accounts for the influence of protocol parameters of window size and timeout duration for waiting for acknowledgements, probabilities of distorting segments in individual links of the data transmission path on the throughput of a transport connection. We have analyzed how the throughput of the control procedure depends on protocol parameters, level of errors in communication channels, and round-trip delay. We have proposed a method for choosing protocol parameters

    АкадСмик РАМН Π•.Н. МСшалкин (1916–1997) ΠΈ Π΅Π³ΠΎ ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΉ ΠΏΡ€ΠΈΠΎΡ€ΠΈΡ‚Π΅Ρ‚ Π² Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠ³ΠΎ ΠΊΠ°Π²ΠΎΠΏΡƒΠ»ΡŒΠΌΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ анастомоза Π² ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ΅

    No full text
    ИдСя ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ ΠΊΠ°Π²ΠΎΠΏΡƒΠ»ΡŒΠΌΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ анастомоза Π²ΠΎΠ·Π½ΠΈΠΊΠ»Π° ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ Ρƒ Ρ…ΠΈΡ€ΡƒΡ€Π³ΠΎΠ² БША (А. Π‘Π»Π΅Π»ΠΎΠΊ), Π˜Ρ‚Π°Π»ΠΈΠΈ (К. ΠšΠ°Ρ€Π»ΠΎΠ½), Π‘Π‘Π‘Π  (А.Н. Π‘Π°ΠΊΡƒΠ»Π΅Π²) ΠΈ Π’Π΅Π½Π³Ρ€ΠΈΠΈ (Π€. Π ΠΎΠ±ΠΈΡ‡Π΅ΠΊ). ΠŸΠ΅Ρ€Π²Ρ‹ΠΉ ΠΊΠ°Π²ΠΎΠΏΡƒΠ»ΡŒΠΌΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ анастомоз Π² Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… модификациях Π² экспСримСнтС Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠ» К. ΠšΠ°Ρ€Π»ΠΎΠ½ Π² ΠΊΠΎΠ½Ρ†Π΅ 1949 Π³. – Π½Π°Ρ‡Π°Π»Π΅ 1950 Π³. ΠŸΠ΅Ρ€Π²Ρ‹Π΅ Π΄Π²Π΅ Π½Π΅ΡƒΠ΄Π°Ρ‡Π½Ρ‹Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π² ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ΅ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠ» амСриканский Ρ…ΠΈΡ€ΡƒΡ€Π³ Π₯.β€―Π¨ΡƒΠΌΠ°Ρ…Π΅Ρ€ Π΄ΠΎ ноября 1954 Π³. ΠœΠΈΡ€ΠΎΠ²ΠΎΠΉ ΠΏΡ€ΠΈΠΎΡ€ΠΈΡ‚Π΅Ρ‚ Π² сСрии ΡƒΡΠΏΠ΅ΡˆΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ Π² ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ Π•.Н. ΠœΠ΅ΡˆΠ°Π»ΠΊΠΈΠ½Ρƒ (с 3 апрСля ΠΏΠΎ ΠΎΠΊΡ‚ΡΠ±Ρ€ΡŒ 1956 Π³.). Π’ извСстном смыслС Π΅Π³ΠΎ успСх обусловлСн ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ исслСдованиями, Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹ΠΌΠΈ осСнью 1955 Π³. – вСсной 1956 Π³. Н.К. Π“Π°Π»Π°Π½ΠΊΠΈΠ½Ρ‹ΠΌ, Π’.М. Дарбиняном ΠΈ Π”.А. Π”ΠΎΠ½Π΅Ρ†ΠΊΠΈΠΌ. Однако Π²ΠΏΠ»ΠΎΡ‚ΡŒ Π΄ΠΎ августа 1956 Π³. Н.К. Π“Π°Π»Π°Π½ΠΊΠΈΠ½ ΠΈ Π΅Π³ΠΎ ΠΊΠΎΠ»Π»Π΅Π³ΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ Π½Π΅ Π±Ρ‹Π»ΠΈ Π³ΠΎΡ‚ΠΎΠ²Ρ‹ Π²Π½Π΅Π΄Ρ€ΠΈΡ‚ΡŒ ΠΊΠ°Π²ΠΎΠΏΡƒΠ»ΡŒΠΌΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ анастомоз Π² ΠΊΠ»ΠΈΠ½ΠΈΠΊΡƒ. ΠŸΠ΅Ρ€Π²Ρ‹ΠΉ ΡƒΡΠΏΠ΅ΡˆΠ½Ρ‹ΠΉ ΠΊΠ°Π²ΠΎΠΏΡƒΠ»ΡŒΠΌΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ анастомоз Π² БША 25 фСвраля 1958 Π³. Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠ» Π’. Π“Π»Π΅Π½Π½. ΠžΠΏΡ‹Ρ‚ Π°Π²Ρ‚ΠΎΡ€Π°, Π΅Π³ΠΎ Π°Π²Ρ‚ΠΎΡ€ΠΈΡ‚Π΅Ρ‚ ΠΈ публикация Π² прСстиТном ΠΆΡƒΡ€Π½Π°Π»Π΅ ΠΏΡ€ΠΈΠ²Π΅Π»ΠΈ ΠΊ Ρ‚ΠΎΠΌΡƒ, Ρ‡Ρ‚ΠΎ ΠΊΠ°Π²ΠΎΠΏΡƒΠ»ΡŒΠΌΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ анастомоз Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ Π“Π»Π΅Π½Π½Π° (Glenn procedure). Π‘Ρ‡ΠΈΡ‚Π°Π΅ΠΌ, ΠΎΠ΄Π½Π°ΠΊΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π΅Π΅ Π΅Π³ΠΎ Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ Π‘Π°ΠΊΡƒΠ»Π΅Π²Π° – МСшалкина ΠΈΠ»ΠΈ просто русским анастомозом.ΠŸΠΎΡΡ‚ΡƒΠΏΠΈΠ»Π° Π² Ρ€Π΅Π΄Π°ΠΊΡ†ΠΈΡŽ 17 июля 2017 Π³. ΠŸΡ€ΠΈΠ½ΡΡ‚Π° ΠΊ ΠΏΠ΅Ρ‡Π°Ρ‚ΠΈ 13 августа 2017 Π³.Π€ΠΈΠ½Π°Π½ΡΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π»ΠΎ спонсорской ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ.ΠšΠΎΠ½Ρ„Π»ΠΈΠΊΡ‚ интСрСсовАвторы Π·Π°ΡΠ²Π»ΡΡŽΡ‚ ΠΎΠ± отсутствии ΠΊΠΎΠ½Ρ„Π»ΠΈΠΊΡ‚Π° интСрСсов.Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡΠŸΠΎΠ»Π½Ρ‹ΠΉ англоязычный тСкст ΡΡ‚Π°Ρ‚ΡŒΠΈ ΠΈ список Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π½Π° Π»Π°Ρ‚ΠΈΠ½ΠΈΡ†Π΅ доступны Π² элСктронной вСрсии Π½Π° сайтС ΠΆΡƒΡ€Π½Π°Π»Π°: http://journalmeshalkin.ru/index.php/heartjournal/article/view/493</p

    Design criteria and validation of a vacuum load current multiplier on a mega-ampere microsecond inductive storage generator

    No full text
    International audienceThe load current multiplier concept (LCM) was suggested for improving the energy transfer efficiency from pulse power generators to loads. The concept was initially demonstrated at atmospheric pressure and dielectric insulation on a compact, 100 kA, microsecond capacitor bank. This paper reports on the LCM design criteria for mega-ampere vacuum pulse power when the LCM comprises a large-inductance magnetic flux extruder cavity without a magnetic core. The analytical and numerical design approach presented was experimentally validated on GIT12 mega-ampere inductive energy storage generator with a constant-inductance load. The LCM technique increased the peak load current from typically 4.6 MA at 1.87 Β΅s on this generator, to 6.43 MA at 2.0 Β΅s. The electromagnetic power into a ~10 nH load increased from 100 GW to 230 GW. This result is in good agreement with the presented numerical simulations and it corresponds to a 95% increase of the achievable magnetic pressure at 8 cm radius in the load. The compact, LCM hardware allows the GIT12 generator to operate more efficiently without modifying the stored energy or architecture. The demonstrated load power and energy increase using the LCM concept is of importance for further studies on power amplification in vacuum and high energy density physics
    corecore