23 research outputs found

    Magnetic susceptibility of YBa2Cu3 O6+x crystals: Unusual Curie behavior and small contributions from charge density waves

    Get PDF
    © 2016 American Physical Society. We report measurements of the magnetic susceptibility of twinned single crystals of YBa2Cu3O6+x from just above their superconducting transition temperatures to 300 K with magnetic fields of up to 5 T applied parallel and perpendicular to the CuO2 planes at seven values of x. Appropriate analysis allows the relatively small, but still important, Curie terms to be separated from other contributions to the susceptibility. Our data support a picture in which the Curie terms arise from oxygen disorder in the Cu-O chains. This agrees with published work on polycrystalline samples where the sample cooling rate was varied, but here we show that the Curie plots flatten out above 200 K. We identify small effects of charge density wave (CDW) instabilities in the temperature (T) derivative of the in-plane susceptibility dχab(T)/dT and discuss their x dependence. For x=0.67 we make a detailed comparison with published high energy x-ray diffraction data using a minimal model involving Fermi arcs, thereby obtaining values for the CDW energy gap and the Helmholtz free energy in a coherence volume. At 80 and 100 K the latter is comparable with, or smaller than, kBT, respectively, highlighting the probable importance of thermal fluctuations. We note that the effect of the Lorentz force on charge carriers in the Fermi arcs could provide a simple mechanism for enhancing the CDWs in high magnetic fields, as suggested by recent experiments

    Nonlocal vortex motion in mesoscopic amorphous Nb0.7Ge0.3 structures

    Get PDF
    We study nonlocal vortex transport in mesoscopic amorphous Nb0.7Ge0.3 samples. A dc current I is passed through a wire connected via a perpendicular channel, of a length L= 2-5 um, with a pair of voltage probes where a nonlocal response Vnl ~ I is measured. The maximum of Rnl=Vnl/I for a given temperature occurs at an L-independent magnetic field and is proportional to 1/L. The results are interpreted in terms of the dissipative vortex motion along the channel driven by a remote current, and can be understood in terms of a simple model.Comment: 4 pages, 3 figure

    Quantum oscillations of the magnetic torque in the nodal-line Dirac semimetal ZrSiS

    Full text link
    We report a study of quantum oscillations (QO) in the magnetic torque of the nodal-line Dirac semimetal ZrSiS in the magnetic fields up to 35 T and the temperature range from 40 K down to 2 K, enabling high resolution mapping of the Fermi surface (FS) topology in the kz=πk_z=\pi (Z-R-A) plane of the first Brillouin zone (FBZ). It is found that the oscillatory part of the measured magnetic torque signal consists of low frequency (LF) contributions (frequencies up to 1000 T) and high frequency (HF) contributions (several clusters of frequencies from 7-22 kT). Increased resolution and angle-resolved measurements allow us to show that the high oscillation frequencies originate from magnetic breakdown (MB) orbits involving clusters of individual α\alpha hole and β\beta electron pockets from the diamond shaped FS in the Z-R-A plane. Analyzing the HF oscillations we have unequivocally shown that the QO frequency from the dog-bone shaped Fermi pocket (β\beta pocket) amounts β=591(15)\beta=591(15) T. Our findings suggest that most of the frequencies in the LF part of QO can also be explained by MB orbits when intraband tunneling in the dog-bone shaped β\beta electron pocket is taken into account. Our results give a new understanding of the novel properties of the FS of the nodal-line Dirac semimetal ZrSiS and sister compounds

    Transport properties of hydrogen-doped (Zr 80 3d 20 ) 1-x H x (3d = Co, Ni) metallic glasses

    Get PDF
    The electrical resistivities of hydrogen-doped (Zr 80 3d 20 ) 1-x H x (3d = Ni, Co; x ≤ 0.11) metallic glasses have been measured at temperatures between 2 K and 110 K and in magnetic fields up to 1 T for various dopant concentrations. These systems have a high room-temperature resistivity (ρ > 160 µΩ cm) and become superconducting below 4 K. The increase of the room-temperature resistivity and its temperature coefficient with hydrogen dopant concentration is explained as due to an increase of disorder with hydrogen-doping. The temperature and magnetic field dependence of the resistivity has been analysed using theoretical models of weak-localisation and electron-electron interaction in disordered conductors. The hydrogen dopant is found to reduce the effective electron diffusion constant, D, the spin-orbit scattering rate, 1 so , τ − the superconducting transition temperature, T c , and broadens the superconducting transition region. The contribution of the Maki-Thompson interaction to the magnetoresistivity is also reduced

    Effect of vortex-core size on the flux lattice in a mesoscopic superconducting strip

    Get PDF
    We present an experimental study of the vortex-motion dissipation in a mesoscopic amorphous (a-)Nb0.7Ge0.3 strip, with emphasis on the results for 3-8 vortex rows parallel to the long strip axis. In the isothermal voltage vs magnetic field traces, at a constant current, we observe plateaus superimposed onto a monotonic background. The plateaus appear because finite vortex-core size influences the accommodation of the flux lattice into the strip. This conclusion is drawn from a quantitative analysis, which is free of adjustable parameters, of the magnetic fields that edge the plateaus

    Nernst effect of epitaxial YBCO films doped with Ca and Zn

    No full text
    We report Nernst effect measurements for some crystalline films of Ca and Zn-doped yttrium barium copper oxide grown by pulsed laser deposition. We argue that our results and most of the published data for LSCO are consistent with the theory of Gaussian superconducting fluctuations

    Magnetic susceptibility of YBa

    No full text
    corecore