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The electrical resistivities of hydrogen-doped (Zr803d20)1–xHx (3d = Ni, Co; x ≤ 0.11) metallic glasses have 
been measured at temperatures between 2 K and 110 K and in magnetic fields up to 1 T for various 
dopant concentrations. These systems have a high room-temperature resistivity (ρ > 160 µΩ cm) and be-
come superconducting below 4 K. The increase of the room-temperature resistivity and its temperature 
coefficient with hydrogen dopant concentration is explained as due to an increase of disorder with hydro-
gen-doping. The temperature and magnetic field dependence of the resistivity has been analysed using 
theoretical models of weak-localisation and electron–electron interaction in disordered conductors. The 
hydrogen dopant is found to reduce the effective electron diffusion constant, D, the spin-orbit scattering 
rate, 1

so ,τ
− the superconducting transition temperature, Tc, and broadens the superconducting transition re-

gion. The contribution of the Maki-Thompson interaction to the magnetoresistivity is also reduced. 

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

Metallic glasses offer an excellent matrix in which to study the behaviour of electrons in disordered 
systems. It has been shown that the diffusive motion of electrons in two-dimensional as well as in three-
dimensional disordered systems entails quantum corrections to the resistivity and magnetoresistivity. 
There are two principal sources of quantum corrections, known as weak localisation, WL, [1, 2] and 
Coulomb interaction, CI, [3, 4]. Both of these corrections are important when the mean free path be-
comes short so that electron propagation between scattering events is no longer free-electron-like but 
diffusive. At low enough temperatures, where the elastic scattering time is a few orders of magnitude 
shorter than the inelastic scattering time, the quantum corrections arising from the interference of the 
electronic partial waves are very important. It has been shown that constructive interference of the elec-
tronic waves can only be expected in a back-scattering geometry, thus producing an increase of the sam-
ple resistivity. The magnitude of this additional contribution at a given temperature is reduced by the 
presence of the inelastic, spin-orbit or spin-flip scattering, since they destroy the constructive interfer-
ence. An external magnetic field also causes dephasing of partial waves generating a particular behaviour 
in magnetoresistivity. The diffusive character of electrons in highly disordered materials also leads to a 
reduced screening of the electron–electron interaction.  
 The quantum corrections lead to an anomalous dependence of the resistivity on temperature, sample 
dimension, and external fields [5–8]. Although the WL and CI theories have been developed for free 
electrons, their applicability to transition-element metallic glasses, with dominant d-band conductivity, 
has been successful. 
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 We report on the resistive properties resulting from doping Zr803d20 (3d = Ni, Co) metallic glasses 
with hydrogen. These glasses are characterised by high room-temperature resistivities, they are paramag-
netic and become superconducting at temperatures below 4 K. The hydrogen dopant, as used here, plays 
the role of an atomic probe to study quantum interference at defects and to gain insight into the way the 
atomic microenvironment influences the electronic properties of the disordered system. 

2 Experimental methods 

Ribbons of Zr803d20 metallic glass were prepared by rapid solidification of the melt on a single-roll spin-
ning copper wheel in an argon atmosphere. The samples, 1–2 cm long, 1.5 mm wide and 25 µm thick 
were then cut from the ribbon. The hydrogenation was carried out electrolytically. The amount of ab-
sorbed hydrogen was determined volumetrically. The as-quenched and hydrogenated samples were ex-
amined by X-ray diffraction, using Cu Kα radiation to verify that they were amorphous. 
 The sample resistance was measured by a low-frequency (23.2 Hz) four-probe ac method in the  
temperature range 2–290 K and in magnetic fields up to 1 T. The precision of these measurements  
extends to a few parts in 106. The temperature range from 2–40 K was covered using a liquid-helium 
cryostat, while, above 40 K and up to 290 K, the measurements were carried out in a Cryodyne Refrig-
erator. 

3 Theoretical models 

In a superconductor, the fluctuating conductivity dominates over the localisation and CI conductivity in 
the vicinity of the superconducting transition temperature, Tc. This excess electrical conductivity consists 
of two terms 

 ∆σ = σAL + σMT , (1) 

where σAL is the Aslamazov–Larkin, (AL) [9], term, which originates from the virtual Cooper pairs cre-
ated by thermal fluctuations and σMT is the Maki–Thompson, (MT) [10], term, coming from the interac-
tion of normal conducting electrons and the superfluid. 
 In three dimensions, the temperature-dependent quantum correction to the conductivity due to  
WL in the presence of inelastic, τi, and spin-orbit, τso, scattering is given by Fukuyama and Hoshino [1] 
as 

 σWL=
1/ 2 1/ 22
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where D is the diffusion coefficient. τso is temperature independent and τi = αiT
–p, with 2 ≤ p ≤ 4 at tem-

peratures T < ΘD (ΘD is the Debye temperature), at which the dominant contribution to the inelastic scat-
tering comes from the electron–phonon interaction. 
 The correction for the electron–electron interaction in the diffusion and the Cooper channels takes the 
following form [3, 4] 
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where T0 is equal to Tc, if the alloy is a superconductor. Otherwise, T0 is taken to be of the order of the 
Fermi temperature, TF. F* = F – λ, where F is the averaged screened Coulomb potential (0 ≤ F ≤ 1, de-
pending on the screening length) and λ is the electron–phonon coupling constant. 
 The complete magnetoresistivity expression due to the weak localisation, superconducting fluctuations 
(the Maki–Thompson contribution), the spin-orbit scattering, the spin Zeeman, and the orbital effects has  
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been developed by Fukuyama and Hoshino and is given by [1], and [11] as 

 ∆ρ = ρ(B, T) – ρ(0, T) =  –Aρ2 {u1/2 [ F3((1 + t)/u) – βF3(t/u)] + 0.5(u/(1 – γ))1/2   

 [F3(t+/u) – F3(t–/u)] – (t–
1/2 – t+

1/2)/(1 – γ)1/2 + t1/2 – (t + 1)1/2} , (4) 

with  A = e2(Dτso)
–1/2/2π2 

ħ,  γ = [g*µBBτso/2ħ (1 – I)]2,  u = eDBτso/ħ,  t = τso/4τi , 

 t± = t + 0.5 [1 ± (1 – γ)1/2] ,  and  

 F3(z) = ∑ {2 [(n + z + 1)–1/2 – (n + z)–1/2] – (n + z + 0.5)–1/2}, 

where D = vF
2τ/3 is the diffusion constant; τ, τi, and τso are the elastic, the inelastic, and the spin-orbit 

scattering times, respectively; g* is the effective g factor, (1 – I)–1 is the Stoner factor, and µB is the Bohr 
magneton. The term proportional to β  arises from the Maki–Thompson interaction. The magnetic field 
dependence of the Maki–Thompson fluctuation conductivity was first discussed by Larkin [12] who 
derived an expression valid in the low-field limit, for temperatures not too close to Tc. After calculating 
g(T)–1 = ln (Tc/T) we use Larkin’s tabulation to obtain β(T). 
 The contributions to the magnetoresistivity arising from the Coulomb interaction are the orbital effects 
in the Cooper channel [2] 

 ∆ρ = ρ2g(T, B) e2/(8π2 
ħ) (eB/ħ)1/2 Φ3 (2DeB/πkBT),  (5) 

and the spin splitting of the conduction electron energies in the diffusion channel [3] 

 ∆ρ = ρ2e2/(4π2 
ħ) F*(kBT/2ħD)1/2g3(gµBB/kBT), (6) 

with 

 F* = 32F/3 [(1 + F/2 )3/2 – (1 + 3F/4)], 

where F is the averaged screened Coulomb potential (0 ≤ F ≤ 1, depending on the screening length), the 
functions Φ3, g3 are similar in form to F3. 

4 Results and discussion 

The change in the temperature-dependent electrical resistivity, relative to its value at 290 K, ∆ρ/ρ 
(290 K), of hydrogen-doped (Zr80Ni20)1–xHx (x = 0, 0.03, 0.05, 0.11) and (Zr80Co20)1–xHx (x = 0, 0.015, 
0.05, 0.11) samples for temperatures 3 K < T < 110 K are shown in Fig. 1 and 2, respectively. The solid 
lines are the best fits to the sum of Eq. (2, 3). The temperature coefficients of the resistivity (TCR) of the 
hydrogen-doped (Zr803d20)1–xHx (3d = Co, Ni) samples are negative above 10 K and their absolute values 
increase with the hydrogen concentration.  
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Fig. 1 Change in the temperature-dependent electrical 
resistivity, relative to its value at 290 K, of hydrogen 
doped (Zr80Ni20)1–xHx metallic glasses. [x = 0 (□), 0.03 
(○), 0.05 (∆), 0.11 (◊)]. The lines are the best fits to the 
sum of Eq. (2) and (3). 



phys. stat. sol. (b) 241, No. 4 (2004) / www.pss-b.com 911 

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

0 10 20 30 40 50 60 70 80 90 100 110
0.00

0.02

0.04

0.06

0.08

0.10

∆
ρ

/ρ
(2

9
0

K
)

T (K)  
 

 The temperature-dependent part of the electrical resistivity relative to its value at 4.2 K, ρ(T)/ρ 
(4.2 K), of (Zr80Ni20)1–xHx metallic glasses (x = 0, 0.03, 0.05, 0.11), in the vicinity of Tc is shown in 
Fig. 3. Doping with hydrogen reduces Tc, the superconducting transition region broadens and “steps” 
appear in the resistance curve at the transition for hydrogen concentration x = 0.11.  
 These steps can be associated with inhomogeneities due to different environments of H-atoms in the 
matrix. According to the structural analyses of hydrogen doped Zr-3d metallic glasses [13] H-atoms tend 
to occupy preferentially tetrahedral holes surrounded by four Zr-atoms. If we compare the present results 
with our earlier investigation of  (Zr67Co33)1–xHx, metallic glasses [14], we conclude that, in the system 
with higher zirconium concentration, the “steps” appear at a higher hydrogen concentration. Hydrogen 
atoms thus migrate to the Zr-rich sites where their s-electron hybridise with Zr d-band. This results in a 
reduction of the Zr 4d-density of states at EF. The same effect has been observed in the low-temperature 
specific heat measurements of hydrogen-doped Zr-Ni metallic glasses [15]. Thus we can conclude that 
the lowering of Tc is due to the decrease of the Zr 4d-density of states at the Fermi level and an en-
hancement of the system disorder with increasing hydrogen concentration.  
 The magnetoresistivity of  (Zr80Ni20)1–xHx metallic glass as a function of magnetic fields up to 1 T, for 
various hydrogen concentrations (x = 0, 0.03, 0.05, 0.11) is shown in Fig. 4. The magnetoresistivity is 
positive for all samples. The increase of hydrogen concentration leads to a decrease of the magnetoresis-
tence slopes, and hence of the Maki–Thompson contribution and Tc. The magnetoresistivity  
of  (Zr80Co20)0.95H0.05 sample as a function of magnetic fields up to 1 T, for various temperatures, T, 
(T = 4.19 K, 5 K and 6K) is shown in Fig. 5. The increase of temperature leads also to a decrease of the 
magnetoresistence slopes, and hence of the Maki–Thompson contribution.  
 The temperature-dependent change of the resistivity of (Zr803d20)1–xHx metallic glasses consists of  
two contributions: weak localisation and electron–electron interaction. The fits to the experimental  
data (Fig. 1,  2) are derived from the sum of relations (2) and (3) with the inelastic scattering time,  
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Fig. 2 Change in the temperature-dependent electrical 
resistivity, relative to its value at 290 K, of hydrogen 
doped (Zr80Co20)1–xHx metallic glasses. [x = 0 (□), 0.015 
(○), 0.05 (∆), 0.11 (◊)]. The lines are the best fits to the 
sum of Eq. (2) and (3). 

Fig. 3 The temperature-dependent part of the electrical 
resistivity relative to its value at 4.2 K, ρ(T)/ρ(4.2 K), of 
(Zr80Ni20)1–xHx metallic glasses [x = 0 (□), 0.03 (○), 0.05 
(∆), 0.11 (◊)]. 



912 I. Kokanović et al.: Transport properties of hydrogen-doped (Zr803d20)1–xHx (3d = Co, Ni) metallic glasses 

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

Table 1 Values of the hydrogen concentration, x, the diffusion constant, D, the inelastic scattering time, 
τi (4.2 Κ), the spin-orbit scattering time, τso, the superconducting transition temperature, Tc, the electrical 
resistivity, ρ (290 Κ), and the screening parameter F*, obtained from the resistivity data.  

x 
±0.002 

D 
±0.02 
10−5 m2 s–1 

τi(4.2 K)  
±0.02 
10−11 s 

τso 
±0.02 
10–13 s 

Tc 
±0.02 
K 

ρ (290 Κ) 
±1 
µΩ cm 

F* 
±0.03 

(Zr80Ni20)1–xHx 

0 3 0.95 3.5 3.72 165 0.1 
0.03 2.97 0.96 4.5 3.42 168 0.1 
0.05 2.94 1.27 6.5 2.97 173 0.1 
0.11 2.85 1.36 8.0 2.72 183 0.1 

(Zr80Co20)1–xHx 

0 3 0.79 3.5 3.98 170 0.1 
0.015 2.95 0.96 4.5 3.87 173 0.03 
0.05 2.9 1.03 5.2 3.24 177 0.03 
0.11 2.8 1.08 7.5 2.98 188 0.03 

 

 

τi = αiT
–2, the spin-orbit scattering time, τso, the diffusion constant, D, and the screening parameter, F*, 

used as the fitting parameters. The values of the parameters are given in Table 1. The values of Tc and 
ρ (290 K) are those determined experimentally. Tc is taken as the midway point on the electrical resistiv-
ity vs. temperature transition curve. The influence of the changes in the value of parameters to the fitting 
procedure is considerable. Thus, for example, a change of 5% in only one of the parameters D, τi and τso 
gives a fit, which deviates significantly from the experimental data. 
 We can conclude that the quantum corrections to the resistivity are proportional to T1/2 ln–1(Tc/T) from 
4 K to 20 K as predicted by the electron–electron interaction model (Eq. 3) and to –T from 20 K to 110 K 
due to weak localisation. 
 It can be seen from Table 1 that the diffusion constant, D, decreases with the increase of hydrogen 
concentration in the (Zr803d20)1–xHx (3d = Ni, Co) system. The inelastic scattering time, τi, increases in 
(Zr803d20)1–xHx (3d = Ni, Co), (Table 1). 
 If we calculate the inelastic phase coherence length, Li(T) = i ,D τ⋅  we find that it increases from 
Li

Ni(4.2 K) = 1.69 × 10–8 m, Li
Co(4.2 K) = 1.54 × 10–8 m in the undoped samples Zr803d20 (3d = Ni, Co) to 

Li
Ni(4.2 K) = 1.97 × 10–8 m, Li

Co(4.2 K) = 1.74 × 10–8 m in the doped samples (Zr803d20)0.89H0.11. This im-
plies that the weak-localisation correction increases with hydrogen, while the screening parameter F* in 
the electron–electron contribution is constant (F*(Ni, Co) ≈ 0.1 in Table 1).  
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Fig. 4 Change in the magnetoresistivity relative to the 
resistivity at T = 4.2 K, ∆ρ/ρ (4.2 K ), versus magnetic 
field, B(T), of hydrogen doped (Zr80Ni20)1–xHx metallic 
glasses (□-x = 0; ○-x = 0.03; ∆-x = 0.05; ◊-x = 0.11). 
Solid lines are the best fits to the sum Eq. (4–6). 
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 The spin-orbit scattering time, τso, is enhanced with increased hydrogen concentration (Table 1). Since 
most of the spin-orbit scattering takes place on Zr atoms and in the d-band, the reduction of the effective 
spin-orbit contribution to the resistivity by the dopant can be taken also as evidence that hydrogen atoms 
migrate mainly to the Zr-rich sites.  
 The electrical resistivity in hydrogen doped (Zr803d20)1–xHx systems increases with hydrogen concen-
tration (Table 1). We have found that sample dimensions remain unchanged during hydrogenation thus, 
the error of the resistivity in Table 1 is in fact the error of the measured resistance and does not include 
the error due to the geometrical factor, which remains unchanged during the measurements. In the case 
of strong scattering, the electron motion becomes diffusive so that the resistivity is expressed as  
ρ = (e2N(EF) D)–1. The values of the density of states at Fermi level, N(EF), derived from the relation, 
N(EF) = (e2

ρD)–1, are given in Table 2. Hydrogen reduces the d-density of states at the Fermi-level in  
Zr-3d metallic glasses, which is consistent with the ultra-violet photoelectron spectroscopy measure-
ments [16] as well as the magnetic susceptibility results [17] and specific heat measurements [15]. Thus 
we conclude that the resistivity increase of (Zr803d20)1–xHx (3d = Co, Ni),  (Table 1), is partly caused by 
the decrease of the density of d-states at the Fermi level, N(EF), and partly by the observed decrease of 
the electron diffusion constant, D, (Table 1).    
 The solid curves fitted to the experimental magnetoresistivity data in Fig. 4 and 5 are derived from the 
sum of relations (4–6) with the inelastic scattering time, τi, and the Stoner factor, (1 – I)–1 used as the 
fitting parameters (Table 2). The phase coherence time, τi, is a fundamental parameter that can be ob-
tained from the magnetoresistivity data. The values of the fitting parameters D, τso, F are those derived 
from the electrical resistivity fit. These parameters are given in Table 1. The Tc’s and ρ (290 K)’s are  
 

Table 2  Values of the hydrogen concentration, x, the inelastic scattering time, τi (4.2 Κ), the density of 
states at Fermi-level, N(EF), and the Stoner factor, (1 – I)–1  obtained from the magnetoresistivity data. 

x 
±0.002   

τi(4.2 K) 
±0.1 
10−11 s 

N(EF)  
±0.1 
states eV–1 at.–1 

(1 – I)–1 
±0.05  

(Zr80Ni20)1–xHx 

0 3.6 2.61 1 
0.03 4.1 2.59 1.1 
0.05 4.2 2.54 1.25 
0.11 4.5 2.48 1.3 

(Zr80Co20)1–xHx 

0 3.4 2.49 1 
0.05 4.0 2.42 3.5 
0.11 4.2 2.36 3.6 

Fig. 5 Change in the magnetoresistivity relative to the 
resistivity at T = 4.2 K, ∆ρ/ρ (4.2 K ), versus magnetic 
field, B(T), of hydrogen doped (Zr80Co20)0.95H0.05 metal-
lic glasses at T = 4.19 K (□), 5 K (○) and 6 K (∆). Solid 
lines are the best fits to the sum Eq. (4–6). 
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those determined experimentally (Table 1). The orbital contribution, Eq. (5), is about 0.4% of the meas-
ured magnetoresistivities at the largest magnetic field used. The contribution to the magnetoresistivity 
from the spin-splitting term, Eq. (6) is greatly reduced in our system by the spin-orbit scattering and it 
amounts to about 0.04% of the measured magnetoresistivities at the largest magnetic field used.  
 The absolute value of τi can give us a better understanding of the dominant relaxation mechanisms. 
The temperature dependence of τi for hydrogen doped (Zr803d20)1–xHx (3d = Ni, Co; x ≤ 0.11) metallic 
glasses is shown in Fig. 6. The temperature dependence of τi closely follows a T–2 in the temperature 
range from 10 K to 110 K and is associated with electron–phonon relaxation processes. Below 10 K a 
more complicated temperature dependence of τi is observed, which has its origin in the electron–electron 
inelastic time due to the Maki–Thompson interaction, as well as the temperature-independent spin scat-
tering at magnetic impurities. The difference between the inelastic scattering time, τi (4.2 K), obtained 
from the electrical resistivity fits and the magnetoresistivity fits can be explained by the τi (4.2 K) satura-
tion at low temperature (Fig. 6). We can compare the observed values of τi with the ones calculated from 
theoretical predictions. 
 Takayama has calculated the inelastic scattering time due to the electron–phonon scattering [18] 

 τi(e-ph)=
2

2 22 ( )
F D

B

k l

k T

ω

λπ

�
, (7) 

with λ the electron–phonon coupling constant, kB is the Boltzmann constant, kF is the Fermi vector, l is 
the electron mean-free path and ωD the Debye frequency. 
 If we use the known values of parameters for the (Zr80Ni20)1–xHx metallic glass: x = 0; λ = 0.55,  
kF = 1.35 × 1010 m–1, l = 3.35 × 10–10 m, T = 4.2 K and ωD = 2.09 × 1013 s–1 and for x = 0.11; λ = 0.5,  
kF = 1.34 × 1010 m–1, l = 3.2 × 10–10 m, T = 4.2 K and ωD = 2.19 × 1013 s–1 we obtain from Eq. (7)  
τi(e-ph) = 2.9 × 10–11 s, for x = 0, and τi(e-ph) = 3.16 × 10–11 s, for x = 0.11. Thus, we can conclude that hy-
drogen enhances the phase coherent time τi(e-ph) by providing additional centres for elastic scattering. The 
enhancement of  τi(e-ph)  is consistent with the observed (Table 2) increase of the inelastic scattering time, 
τi, with the dopant.    
 The Stoner factor, (1 – I)–1, increases with increasing hydrogen concentrations (e.g., (1 – I)–1 = 1 for 
the undoped sample whereas (1 – I)–1 = 3.6 for (Zr80Co20)0.89H0.11). The enhancement of the Stoner factor 
is lager in hydrogen doped (Zr80Co20)1–xHx than in (Zr80Ni20)1–xHx metallic glasses.  

4 Conclusion 

We have analysed the electrical resistivity, the superconducting transition temperature and the magne-
toresistivity results as a function of hydrogen concentration in (Zr803d20)1–xHx (3d = Co, Ni) metallic glas-
ses. 

Fig. 6 The dephasing time, τi, as a function of tempera-
ture in hydrogen doped (Zr80Ni20)1–xHx, [x = 0 (■), 0.03 
(●), 0.05 (▲), 0.11 (♦)] and (Zr80Co20)1–xHx, [x = 0 (□), 
0.05 (∆), 0.11 (◊)] metallic glasses. The solid line corre-
sponds to a T–2 decrease. 
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 The resistivity increase of (Zr803d20)1–xHx is partly caused by the decrease of the density of d-states at 
the Fermi level, N(EF), and partly by the observed decrease of the electron diffusion constant, D, (Ta-
ble 1).  
 The hydrogen dopant lowers Tc and broadens the superconducting transition region of the resistivity. 
The effect of hydrogen on the lowering of Tc is through the decrease of the Zr 4d-density of states at the 
Fermi level and enhancement of disorder. 
 The temperature dependence of the resistivity and magnetoresistivity have been analyzed using theo-
retical models of weak-localisation and electron–electron interaction in disordered three-dimensional 
conductors. Measurements in the magnetic field show positive anomalous magnetoresistance which can 
be interpreted as being due to WL in the presence of strong spin-orbit scattering and Maki-Thompson, 
MT, fluctuations. It has been found that both the spin-orbit and MT contributions are strongly suppressed 
with the dopant. At the same time, hydrogen increases the inelastic scattering time, τi. 
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