8,862 research outputs found
Unifying parameter estimation and the Deutsch-Jozsa algorithm for continuous variables
We reveal a close relationship between quantum metrology and the Deutsch-Jozsa algorithm on continuous-variable quantum systems. We develop a general procedure, characterized by two parameters, that unifies parameter estimation and the Deutsch-Jozsa algorithm. Depending on which parameter we keep constant, the procedure implements either the parameter-estimation protocol or the Deutsch-Jozsa algorithm. The parameter-estimation part of the procedure attains the Heisenberg limit and is therefore optimal. Due to the use of approximate normalizable continuous-variable eigenstates, the Deutsch-Jozsa algorithm is probabilistic. The procedure estimates a value of an unknown parameter and solves the Deutsch-Jozsa problem without the use of any entanglement
A Quantum Rosetta Stone for Interferometry
Heisenberg-limited measurement protocols can be used to gain an increase in
measurement precision over classical protocols. Such measurements can be
implemented using, e.g., optical Mach-Zehnder interferometers and Ramsey
spectroscopes. We address the formal equivalence between the Mach-Zehnder
interferometer, the Ramsey spectroscope, and the discrete Fourier transform.
Based on this equivalence we introduce the ``quantum Rosetta stone'', and we
describe a projective-measurement scheme for generating the desired
correlations between the interferometric input states in order to achieve
Heisenberg-limited sensitivity. The Rosetta stone then tells us the same method
should work in atom spectroscopy.Comment: 8 pages, 4 figure
Preparing multi-partite entanglement of photons and matter qubits
We show how to make event-ready multi-partite entanglement between qubits
which may be encoded on photons or matter systems. Entangled states of matter
systems, which can also act as single photon sources, can be generated using
the entangling operation presented in quant-ph/0408040. We show how to entangle
such sources with photon qubits, which may be encoded in the dual rail,
polarization or time-bin degrees of freedom. We subsequently demonstrate how
projective measurements of the matter qubits can be used to create entangled
states of the photons alone. The state of the matter qubits is inherited by the
generated photons. Since the entangling operation can be used to generate
cluster states of matter qubits for quantum computing, our procedure enables us
to create any (entangled) photonic quantum state that can be written as the
outcome of a quantum computer.Comment: 10 pages, 4 figures; to appear in Journal of Optics
Communicating continuous quantum variables between different Lorentz frames
We show how to communicate Heisenberg-limited continuous (quantum) variables
between Alice and Bob in the case where they occupy two inertial reference
frames that differ by an unknown Lorentz boost. There are two effects that need
to be overcome: the Doppler shift and the absence of synchronized clocks.
Furthermore, we show how Alice and Bob can share Doppler-invariant
entanglement, and we demonstrate that the protocol is robust under photon loss.Comment: 4 pages, 1 figur
- …