6,502 research outputs found
Research in photosynthesis Quarterly report, Jun. 6 - Sep. 6, 1966
Reaction kinetics of dichlorophenol indophenol in illuminated chloroplasts in program of research in photosynthesi
Magnetometer calibration using inertial sensors
In this work we present a practical algorithm for calibrating a magnetometer
for the presence of magnetic disturbances and for magnetometer sensor errors.
To allow for combining the magnetometer measurements with inertial measurements
for orientation estimation, the algorithm also corrects for misalignment
between the magnetometer and the inertial sensor axes. The calibration
algorithm is formulated as the solution to a maximum likelihood problem and the
computations are performed offline. The algorithm is shown to give good results
using data from two different commercially available sensor units. Using the
calibrated magnetometer measurements in combination with the inertial sensors
to determine the sensor's orientation is shown to lead to significantly
improved heading estimates.Comment: 19 pages, 8 figure
A formalism for coupled design learning activities
This paper presents a formalism to represent the inextricable link that exists between design and learning. It provides an approach to study and analyse the complex relationships that may exist between design and learning. It suggests that design and learning are linked at the knowledge level (epistemic link), in a temporal manner and in a purposeful manner through the design and learning goal
Knowledge transformers : a link between learning and creativity
The purpose of this paper is to investigate whether knowledge transformers which are featured in the learning process, are also present in the creative process. This is achieved by reviewing models and theories of creativity and identifying the existence of the knowledge transformers. The investigation shows that there is some evidence to show that the creative process can be explained through knowledge transformers. Hence, it is suggested that one of links between learning and creativity is through the knowledge transformers
Nonlinear state space smoothing using the conditional particle filter
To estimate the smoothing distribution in a nonlinear state space model, we
apply the conditional particle filter with ancestor sampling. This gives an
iterative algorithm in a Markov chain Monte Carlo fashion, with asymptotic
convergence results. The computational complexity is analyzed, and our proposed
algorithm is successfully applied to the challenging problem of sensor fusion
between ultra-wideband and accelerometer/gyroscope measurements for indoor
positioning. It appears to be a competitive alternative to existing nonlinear
smoothing algorithms, in particular the forward filtering-backward simulation
smoother.Comment: Accepted for the 17th IFAC Symposium on System Identification
(SYSID), Beijing, China, October 201
Newton-based maximum likelihood estimation in nonlinear state space models
Maximum likelihood (ML) estimation using Newton's method in nonlinear state
space models (SSMs) is a challenging problem due to the analytical
intractability of the log-likelihood and its gradient and Hessian. We estimate
the gradient and Hessian using Fisher's identity in combination with a
smoothing algorithm. We explore two approximations of the log-likelihood and of
the solution of the smoothing problem. The first is a linearization
approximation which is computationally cheap, but the accuracy typically varies
between models. The second is a sampling approximation which is asymptotically
valid for any SSM but is more computationally costly. We demonstrate our
approach for ML parameter estimation on simulated data from two different SSMs
with encouraging results.Comment: 17 pages, 2 figures. Accepted for the 17th IFAC Symposium on System
Identification (SYSID), Beijing, China, October 201
Modeling and interpolation of the ambient magnetic field by Gaussian processes
Anomalies in the ambient magnetic field can be used as features in indoor
positioning and navigation. By using Maxwell's equations, we derive and present
a Bayesian non-parametric probabilistic modeling approach for interpolation and
extrapolation of the magnetic field. We model the magnetic field components
jointly by imposing a Gaussian process (GP) prior on the latent scalar
potential of the magnetic field. By rewriting the GP model in terms of a
Hilbert space representation, we circumvent the computational pitfalls
associated with GP modeling and provide a computationally efficient and
physically justified modeling tool for the ambient magnetic field. The model
allows for sequential updating of the estimate and time-dependent changes in
the magnetic field. The model is shown to work well in practice in different
applications: we demonstrate mapping of the magnetic field both with an
inexpensive Raspberry Pi powered robot and on foot using a standard smartphone.Comment: 17 pages, 12 figures, to appear in IEEE Transactions on Robotic
Extraterrestrial life detection by enzymatically induced exchange of O-18 Annual report, 15 May 1968 - 15 May 1969
Extraterrestrial life detection by enzymatically induced exchange of oxygen 1
A study of the feasibility of detecting extraterrestrial life based on the exchange between water and oxyanions and a study of energy exchange in autotrophic life Final report
Extraterrestrial life detection from enzyme catalysis of oxygen-18 exchange reaction
- …