72 research outputs found

    An Optimized Combination of a Large Grid Connected PV System along with Battery Cells and a Diesel Generator

    Get PDF
    Environmental, economical and technical benefits of photovoltaic (PV) systems make them to be used in many countries. The main characteristic of PV systems is the fluctuations of their output power. Hence, high penetration of PV systems into electric network could be detrimental to overall system performance. Furthermore, the fluctuations in the output power of PV systems make it difficult to predict their output, and to consider them in generation planning of the units. The main objective of this paper is to propose a hybrid method which can be used to control and reduce the power fluctuations generated from large grid- connected PV systems. The proposed method focuses on using a suitable storage battery along with curtailment of the generated power by operating the PV system below the maximum power point (MPP) and deployment of a diesel generator. These methods are analyzed to investigate the impacts of implementing them on the economical benefits that the PV system owner could gain. To maximize the revenues, an optimization problem is solved

    Wind Turbine Simulators

    Get PDF

    Study of Novel Power Electronic Converters for Small Scale Wind Energy Conversion Systems

    Get PDF
    This chapter proposes a study of novel power electronic converters for small scale wind energy conversion systems. In this chapter major topologies of power electronic converters that used in wind energy converter systems have been analysed. Various topologies of DC/AC single stage converters such as high boost Z-source inverters (ZSI) have been investigated. New proposed schemes for inverters such as multilevel and Z-source inverters have been studied in this proposed chapter. Multilevel converters are categorized into three major groups according to their topologies which are diode clamped multilevel converters (DCM), cascade multilevel converters (CMC) with multiple isolated dc voltage sources and flying capacitor based multilevel converters (FCMC). Z-source inverters are divided to ZSI, qZSI and trans-ZSI types. Trans-ZSI is mostly used for high step-up single stage conversions

    Application of DC-DC Converters at Renewable Energy

    Get PDF
    Photovoltaics usually produce low voltage at their outputs. So, in order to inject their power into utility grids, the output voltage of solar panels should be increased to grid voltage level. Usually, the boost DC-DC converters will be connected between solar panels and grid-connected inverters to boost the panels\u27 output voltage to more than 320 V (for 380/220 utilities). Various DC-DC converter topologies have been proposed in the past three decades to boost the photovoltaic panels\u27 output voltage which will be discussed in this proposal. In order to increase the life span of photovoltaic panels, the DC-DC converts should absorb continuous low ripple current from solar panels. Maximum power point tracking (MPPT) is an algorithm implemented in photovoltaic (PV) inverters by DC-DC technology to continuously adjust the impedance seen by the solar array to keep the PV system operating at, or close to, the peak power point of the PV panel under varying conditions, like changing solar irradiance, temperature, and humidity. In this research work, various topologies of DC-DC converters that are suitable for renewable energy applications along with the advantages and disadvantages of control methods and the stability of converters with related control methods are discussed

    A new approach to design switching strategy for the buck converters

    Get PDF
    In this paper, a novel method is developed to control switched DC-DC Buck converters. The circuit dynamic is described as an affine linear switched system. Utilizing switched systems theory, a switching state-feedback law is derived to asymptotically stabilize the desired equilibrium point and also minimize a guaranteed cost. The efficiency of the proposed method is illustrated by simulation which verifies the improvement of the obtained results compared with the literatures

    Comparison of two novel MRAS strategies for identifying parameters in permanent magnet synchronous motors

    Get PDF
    Two Model Reference Adaptive System (MRAS) estimators are developed for identifying the parameters of permanent magnet synchronous motors (PMSM) based on Lyapunov stability theorem and Popov stability criterion, respectively. The proposed estimators only need online detection of currents, voltages and rotor rotation speed, and are effective in the estimation of stator resistance, inductance and rotor flux-linkage simultaneously. Their performances are compared and verified through simulations and experiments. It shows that the two estimators are simple and have good robustness against parameter variation and are accurate in parameter tracking. However, the estimator based on Popov stability criterion, which can overcome the parameter variation in a practical system, is superior in terms of response speed and convergence speed since there are both proportional and integral units in the estimator in contrast to only one integral unit in the estimator based on Lyapunov stability theorem. In addition, there is no need of the expert experience which is required in designing a Lyapunov function
    corecore