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Abstract- In this paper, a novel method is developed to control 

switched DC-DC Buck converters. The circuit dynamic is 

described as an affine linear switched system. Utilizing switched 

systems theory, a switching state-feedback law is derived to 

asymptotically stabilize the desired equilibrium point and also 

minimize a guaranteed cost. The efficiency of the proposed 

method is illustrated by simulation which verifies the 

improvement of the obtained results compared with the 

literatures. 
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I. INTRODUCTION 

Power electronics converters have been widely used for 
more than three decades [1]. The Buck convertor is one of the 
usual circuit topologies that frequently employed in power 
electronic systems applications, for instance in battery 
powered appliances because of its light weight, compact size 
and high efficiency [2]. Buck circuit is a switching-mode 
power converter and the output voltage features are organized 
by designing a control law for deciding the position of the 
switches. The control subsystem of the Buck converter 
arranges the switching strategy to achieve output voltage 
regulation with desirable transient behavior in the presence of 
output load variation [3]. 

The dynamical model of the Buck circuit similar to other 
switching-model convertors is derived by the conventional 
state-space averaging technique and is used to design 
switching rule for the circuit transistors [4]. Pulse width 
modulation (PWM) and the sliding mode methods are the 
traditional procedures to design controller for the Buck 
convertor [5]. The mentioned approaches to obtain control 
laws are based on simplified models which involve the 
average behavior of the system (neglecting switching 
modeling) and linearizing around particular operational point. 
So, the converter is stable around the operating point, but may 
be unstable in the presence of sizable disturbances or 
parameter variations [6]. Therefore, the models which 
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incorporate the hybrid nature of the switching-mode circuit are 
the best choice to design the switching controller. Hence, 
researchers recently have utilized switched systems theory to 
design control subsystem for stabilization of the DC-DC 
converters [7],[8]. 

Switched systems are composed of a number of subsystems 
and a rule that organize the switching among them [9]. One of 
the fundamental problems in the research of switched systems 
is to construct a switching signal that makes switched system 
asymptotically stable. In [8], a switching rule was developed to 
deal with switched converters. The switching controller takes 
any trajectory of the switched affine system to a desired point 
by minimizing a quadratic cost. Although, the obtained design 
methodology in [8] is simple; however, it is based on one 
quadratic Lyapunov function which makes the proposed 
sufficient conditions conservative. 

Composite Lyapunov function constructed from multiple 
functions is natural choice for the stability analysis and 
stabilization of the switched systems. In [9], for practical 
reason, multiple quadratic functions are used to form a 
composite Lyapunov function to obtain stabilizing switching 
function for non-affine linear switched system. 

In this paper, motivated by the form of the dynamical 
models of the Buck converter, the result of [9] is generalized to 
cope with affme switched linear systems. Furthermore, a 
guaranteed performance is assured by the suggested switching 
strategy. The suggested approach is used to control the Buck 
converter. The simulation results are compared with the results 
of [8] to illustrate the effectiveness of the proposed method. It 
should be noticed that the derived results can be applied to 
control the general types of the converters. 

The paper is organized as follows: In section 2, a switched 
system model is derived for the Buck converter. Sufficient 
conditions for guaranteed cost control design for the affme 
switched system are introduced in section 3. In section 4, 
simulation results are presented to demonstrate the applicability 
of the proposed approach. 

Notation: The notation P > 0 (P 2': 0) means that P is 
real symmetric and positive define (positive semi-definite). 
The superscripT stands for matrix transposition. The set of all 
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non- negative vectors Ie that satisfies If=l Ai = 1 is shown by 
A. AA = If=l AiAi is the convex combination of a set of 
matrices{Av ... ,AN}. Each of l[kvk21signifies the set of 
integers between k1 and k2. 

II. PROBLEM FORMULATION 

A schematic diagram of the typical Buck converter, is 

shown in figure 1. ; where the resistor Ro is the load and the 

inductor current and the capacitor voltage are denoted by iL 

and vc, respectively. 
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Figure l. Schematic of Buck converter 

The dynamical model of the Buck converter can be written 
as the following equation: 

x(t) = Aux(t) + Buu(t) (1) 

Where x(t) = [iL(t) ve(t)V is the state vector , u(t) = u 
is the control input that is supposed to be constant for all 
t> O .  The switching function (J(t): t > 0 -7 K = {1,2} 
selects at each instant of time t > 0 , one subsystem among 
two available ones presented in the following matrices: 

B = 

[ilL] 
1 

0 ' 

-ilL ] 
-l /CoRo 

The set of all attainable equilibrium points are calculated as 
follows: 

(2) 

which is a line segment practically defined only by the load 
since R « Ro. 

It's obvious that the buck converter represented in the form 

of switched affine system (I) that comprises two affine 

subsystems. At each time, only one of the subsystems is active 

and the decision of which subsystem is active is the control 

variable that is determined by the switching rule. 

The control design problem is to obtain a switching strategy 
(}(x(t)) such that ideally, the following performance index is 

minimized: 
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minu Ie = fo
oo 

Rr/ [ve(t) - veF + pR[iL(t) - ieFdt (3) 
where, Xe = [ie' VeV E Xe is an attainable equilibrium point 
and p 2': 0 is a weight parameter. Furthermore, the set of all 
equilibrium points xe which can be achieved by the suggested 
switching strategy, i.e. x(t) -7 xe when t -7 00 is determined. 
The performance index Ie in (3) represents the weighted sum 
of the energy of the deviation signal of each state variable 
from the chosen equilibrium point. Solving the mentioned 
control problem is difficult because of non-continuous nature 
of the switching function (J(x(t)). Instead, as usual, the upper 
bound of the performance index Ie is minimized. So, the 
resulting guaranteed cost control problem is to investigate the 
switching function (J(x(t)) that renders the equilibrium point 
xe asymptotically stable and the following general guaranteed 
cost holds: 

in which ,the Xo denotes the initial state. 

III. CONTROLLER DESIGN 

In this section, we utilize the concept of composite 

Lyapunov functions to extract a procedure to determine 

switching signal for affine switched systems with constant 

input which is applicable for Buck converters. Moreover, this 

switching rule is obtained such that the guaranteed cost (4) is 

minimized. 

Theorem 1: Consider the switched affine system (1) with 

constant control input u(t) = u for all t 2': 0 and let positive 

integer] and Xe E Rn be given. If there existA Ell., real 

scalars f3ij 2': 0 for i E K,j E 1[1,]] and symmetric positive 

definite matrices Pj E Rnxn for j E 1[1,]] such that 

Then, the switching strategy 

(J = argmin iEK �T P(AiXe + Biu) 

(5) 

(6) 

(7) 

with � = x - xe and p:o:; Pj for all j E 1[1,J] , makes the 

equilibrium point Xe E Rn globally asymptotically stable and 
the guaranteed cost (4) holds. 

Proof: A composite Lyapunov candidate function V min ({) is 
built from the quadratic functions l-j ({) = �T Pj� as follows: 

Vmin({) = min { l-j({):j E 1[1,JD 

where Pj = pI> 0, j E 1 [1,1] . For abbreviation, let 

Imin({) = {1,2, .. ·,Io} for a certain integerIo:O:;J. Then, 



VminCO < �Tpk� for k > 10 . This fact can be written as: 

�TCPj - Pk)� ::; 0, For all j ::; 10 and k E /[1, J]. This 

inequality is equivalent to 

j::;lo, kE/[l,J] (8) 

The time derivative of the Vmin (�) along trajectory of the 

switched system (1) is obtained as follows: 

VminCO = min {ijCn, j E IminCO} 
wherein, 1-)CO is obtained as follows: 

ijCO = xTPj � + �TpjX 
= 2�Tpj(Aux + Buu) 

= 2�TpjCAux + Buu) + �TCA�Pj + PjAuK 

The choice of (J = argmin i,j �TPjCAiXe + Biu), Leads to: 

V:J,CO = min, [2�TpjCAiXe + Biu)] + �TCA�Pj + PjAu)� [EK 

Now, let choose it such that: 

AAxe + BAu = 0 

and also for all i E K the following holds: 

ATp. +PA <-Q [J J [ 

(9) 

(10) 

then, ijCO < _�T Q� and consequently the following holds: 

ijCO<_�TQ� (11) 

It's clear that if the above inequality holds, asymptotic 
stability of Xe would be achieved. By S-procedure [10], 
inequalities (8) and (10) can be combined which yields to the 
following inequality: 

A;Pj + PjAi + Q - L.�=l{3jK(Pj - PK)< 0 

in which, (3ij ::::: 0 are real scalars. Moreover, integrating both 

sides of(11) from t = Oto t = 00 and setting Vmin(�COO)) = 0 
,the relation (4) is obtained. The relation (4) is obtained. _ 

Remark 1. The presence of the product of scalar variables 
and matrix variables in (5) brings bilinear terms in these 
matrix inequalities. For the considered two mode Buck 
converter, these conditions are simple to be figured out. 
Nonetheless, in complicated problems the path-following 
method proposed in [11] can be utilized to solve the feasibility 
BMI problem. 

Remark 2. The switching function in (7) is linear and then 
its implementation is straightforward in practical applications. 
Although the Theorem 1 in [8] provides a linear switching 
law, the design conditions to be handled are much more 
stringent than the design conditions introduced in this paper. 
In the other word, the proposed design technique noticeably 
yield less conservative results compared with [8]. 
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I V. SIMULATION RESULTS 

In this section, the suggested procedure is applied to obtain 
switching rule for a typical Buck converter. The circuit is 
simulated by SIMULlNK® software and then, the results is 
compared with the approach introduced in [8]. The 
considered Buck converter has the nominal values that are 
equal to u=I OOV, R=2n, L=500 IlH, Co=470 IlF and Ro=50n. 
Analogous to [7], the value of the weight matrix parameter p 
in (3) is set to zero, so the following cost weight matrix is 
obtained: 

Q = [� I;Ro ] 
The path following method [11] is employed to solve the 

bilinear matrix inequalities obtained in (5) and (6) using 
Y ALMIp® toolbox [12] and then, the switching strategy in (7) 
is simply implemented. The phase plane trajectories of the 
closed-loop system are shown in figure 2. These curves arising 
from zero initial condition towards the desired load voltages 
varying from 10 to 70 volts. 

80,.-----,------,------,----,----,-------,-----,-----, 

Figure 2, 

10 15 

Trajectories of the converter states towards different points of the 
load voltages 

40 

The performance index Ie in (3) is calculated to compare the 
suggested approach with the results of the method in [8]. The 
values are summarized in the Table 1 for three different 
desired equilibrium points. The converter outcome resulting 
from the proposed controller improved up to 20% with 
respect to the results obtained by the approach of [8] which 
approves the better performance of the suggested scheme 
compared with [8]. 

Furthermore, to clarify the improvement of the converter 
output, time response of the states are shown in Figures 3 to 5 
for ve = 10V , ve = 20V and ve = 30V; respectively. It's 
obvious that the transient behavior of the proposed converter 
is faster than the converter introduced in [8]. In Figure 3, the 
output settling times of the proposed converter and the one in 
[8] are respectively equal to I.I07ms and 1.608ms, and in 
Figure 4, the mentioned quantities are 1.091 ms and 1.455ms 



for the designed converter and the rival one in [8]; which 

proves the enhanced output of the suggested scheme which 

verifies the improved output of the devised approach. 

TABLE!. COMPARISON OF THE RESULTS FOR DIFFERENT EQUILIBRIUM 
POINTS 

Performance index J 

[8] 

0.0066 

0.003 

0.00062 

00 

12 

1: ( 

� 

0
0 

Figure 3.  

Proposed method 

0.0051 

0.002 

0.00051 

0.5 

I I 

0.005 0.01 
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timers) 
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0.015 
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Ve =10 

. Method 0[[8] 

-ProposedMethod 
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. Methodof[8} 

x 10J 

-ProposedMethod 

I I 
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Time response of the output voltage and inductor current for 

ve=IO v 
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Figure 4. Time response of the output voltage and inductor current for 
ve =20 v 

4 5 

. Method 0[[8] 

-Proposed Method 

timers) 
x 10.3 

40 

. Methodof[8] 

-Proposed Method 

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 
timers) 

Figure 5. Time response of the output voltage and inductor current for 

ve=30 v 



V. CONCLUSION 

In this paper, an existing technique to obtain the stabilizing 
state-feedback switching law for autonomous switched 
systems extended to the affine switched systems with constant 
external input. Moreover, the switching strategy designed such 
that minimizes a quadratic guaranteed cost. A classical Buck 
converter simulated to show the simplicity and efficiency of 
the proposed design scheme. A comparison with the recent 
approach also discussed. Simulation results show that the 
proposed method improves the design performance criterion 
up to 20% with respect to rival approach. The application of 
the proposed method to design control subsystem for 
advanced converter circuits defines further research line. 
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