42 research outputs found

    Immune cell profiles of metastatic HER2-positive breast cancer patients according to the sites of metastasis

    Get PDF
    Purpose Recent works have characterized that metastatic site can affect the tumour immune profiles and efficiency of cancer immunotherapies. The prognosis of HER2-positive breast cancer is associated with the characteristics of the tumour immune microenvironment, with immunological cells playing a central role in efficiency of HER2-targeted antibodies. Here we investigated the prognostic significance of different metastatic sites and their correlation to tumour immune profiles in HER2-positive breast cancer treated with trastuzumab. Methods We collected all (n = 54) HER2-positive metastatic breast cancer patients treated with trastuzumab containing regimens at Oulu University Hospital 2009-2014. Pathological and clinical data were collected from electronic patient records. The tumour immune profiles were analysed from pre-treatment primary tumours using well-characterized immunological markers with computer-assisted immune cell counting. Results Of the metastatic sites, only liver metastases were associated with poor prognosis (hazard ratio 1.809, 95% confidence interval 1.004-3.262), especially when presented as the primary site of metastases. Of the other sites, pulmonary metastases characterized a patient profile with trend to improved survival. Of the studied tumour immunological markers, patients with liver metastases had low densities of CD3(+) T cells (p = 0.030) and M1-like macrophages in their primary tumours (p = 0.025). Of the other studied markers and sites, patients with pulmonary metastases had low STAB1(+)-immunosuppressive macrophage density in their primary tumours. Conclusion Our results suggest that the site of metastasis is associated with prognosis in HER2-positive breast cancer, highlighted by the poor prognosis of liver metastases. Furthermore, liver metastases were associated with adverse tumour immune cell profiles.Peer reviewe

    Immune cell profiles of metastatic HER2-positive breast cancer patients according to the sites of metastasis

    Get PDF
    Purpose Recent works have characterized that metastatic site can affect the tumour immune profiles and efficiency of cancer immunotherapies. The prognosis of HER2-positive breast cancer is associated with the characteristics of the tumour immune microenvironment, with immunological cells playing a central role in efficiency of HER2-targeted antibodies. Here we investigated the prognostic significance of different metastatic sites and their correlation to tumour immune profiles in HER2-positive breast cancer treated with trastuzumab. Methods We collected all (n = 54) HER2-positive metastatic breast cancer patients treated with trastuzumab containing regimens at Oulu University Hospital 2009-2014. Pathological and clinical data were collected from electronic patient records. The tumour immune profiles were analysed from pre-treatment primary tumours using well-characterized immunological markers with computer-assisted immune cell counting. Results Of the metastatic sites, only liver metastases were associated with poor prognosis (hazard ratio 1.809, 95% confidence interval 1.004-3.262), especially when presented as the primary site of metastases. Of the other sites, pulmonary metastases characterized a patient profile with trend to improved survival. Of the studied tumour immunological markers, patients with liver metastases had low densities of CD3(+) T cells (p = 0.030) and M1-like macrophages in their primary tumours (p = 0.025). Of the other studied markers and sites, patients with pulmonary metastases had low STAB1(+)-immunosuppressive macrophage density in their primary tumours. Conclusion Our results suggest that the site of metastasis is associated with prognosis in HER2-positive breast cancer, highlighted by the poor prognosis of liver metastases. Furthermore, liver metastases were associated with adverse tumour immune cell profiles.Peer reviewe

    Functional expression of NF1 tumor suppressor protein: association with keratin intermediate filaments during the early development of human epidermis

    Get PDF
    BACKGROUND: NF1 refers to type 1 neurofibromatosis syndrome, which has been linked with mutations of the large NF1 gene. NF1 tumor suppressor protein, neurofibromin, has been shown to regulate ras: the NF1 protein contains a GTPase activating protein (GAP) related domain which functions as p21rasGAP. Our studies have previously demonstrated that the NF1 protein forms a high affinity association with cytokeratin 14 during the formation of desmosomes and hemidesmosomes in cultured keratinocytes. METHODS: The expression of NF1 protein was studied in developing human epidermis using western transfer analysis, indirect immunofluorescence, confocal laser scanning microscopy, immunoelectron microscopy, and in situ hybridization. RESULTS: The expression of NF1 protein was noted to be highly elevated in the periderm at 8 weeks estimated gestational age (EGA) and in the basal cells at 8–14 weeks EGA. During this period, NF1 protein was associated with cytokeratin filaments terminating to desmosomes and hemidesmosomes. NF1 protein did not display colocalization with α-tubulin or actin of the cytoskeleton, or with adherens junction proteins. CONCLUSIONS: These results depict an early fetal period when the NF1 tumor suppressor is abundantly expressed in epidermis and associated with cytokeratin filaments. This period is characterized by the initiation of differentiation of the basal cells, maturation of the basement membrane zone as well as accentuated formation of selected cellular junctions. NF1 tumor suppressor may function in the regulation of epidermal histogenesis via controlling the organization of the keratin cytoskeleton during the assembly of desmosomes and hemidesmosomes

    Systemic Blockade of Clever-1 Elicits Lymphocyte Activation Alongside Checkpoint Molecule Downregulation in Patients with Solid Tumors : Results from a Phase I/II Clinical Trial

    Get PDF
    Purpose: Macrophages are critical in driving an immunosuppressive tumor microenvironment that counteracts the efficacy of T-cell-targeting therapies. Thus, agents able to reprogram macrophages toward a proinflammatory state hold promise as novel immunotherapies for solid cancers. Inhibition of the macrophage scavenger receptor Clever-1 has shown benefit in inducing CD8 T-cell-mediated antitumor responses in mouse models of cancer, which supports the clinical development of Clever-1-targeting antibodies for cancer treatment. Patients and Methods: In this study, we analyzed the mode of action of a humanized IgG4 anti-Clever-1 antibody, FP-1305 (bexmarilimab), both in vitro and in patients with heavily pretreated metastatic cancer (n = 30) participating in part 1 (dose-finding) of a phase I/II open-label trial (NCT03733990). We studied the Clever-1 interactome in primary human macrophages in antibody pull-down assays and utilized mass cytometry, RNA sequencing, and cytokine profiling to evaluate FP-1305-induced systemic immune activation in patients with cancer. Results: Our pull-down assays and functional studies indicated that FP-1305 impaired multiprotein vacuolar ATPase-mediated endosomal acidification and improved the ability of macrophages to activate CD8(+)T-cells. In patients with cancer, FP-1305 administration led to suppression of nuclear lipid signaling pathways and a proinflammatory phenotypic switch in blood monocytes. These effects were accompanied by a significant increase and activation of peripheral T-cells with indications of antitumor responses in some patients. Conclusions: Our results reveal a nonredundant role played by the receptor Clever-1 in suppressing adaptive immune cells in humans. We provide evidence that targeting macrophage scavenging activity can promote an immune switch, potentially leading to intratumoral proinflammatory responses in patients with metastatic cancer.Peer reviewe

    NF1 tumor suppressor in epidermal differentiation and growth - implications for wound epithelialization and psoriasis

    No full text
    Abstract Neurofibromatosis type 1 (NF1) is a dominantly inherited neurocutaneous disorder caused by mutations in the NF1 gene. Common clinical manifestations associated with NF1 are neurofibromas, café-au-lait macules (CALM), axillary freckling and Lisch nodules of the iris. Other important manifestations are vasculopathy, a variety of osseous lesions, including short stature, scoliosis and pseudoarthrosis, optic gliomas and an increased risk for certain malignancies. The best characterized function of the NF1 gene is to act as a downregulator of Ras proto-oncogene signalling by accelerating the switch of active Ras-GTP into inactive Ras-GDP. The NF1 gene is considered a tumor suppressor since some malignancies may display a loss of heterozygosity or homozygotic inactivation of the gene. The present study investigated the behaviour and function of the NF1 gene during keratinocyte differentiation, wound healing and psoriasis using human epidermis and epidermal keratinocytes as a model. The NF1 protein was shown to associate with the intermediate filament network during keratinocyte differentiation both in vitro and in vivo, and it is thus suggested to play a role in the cytoskeletal re-organization or in the formation of cell adhesions. NF1 gene expression was also studied in psoriasis, in which keratinocytes are hyperproliferative and cell differentiation is altered. NF1 gene expression was downregulated in psoriatic keratinocytes both in vivo and in vitro, suggesting that the NF1 gene might have role in downregulating keratinocyte proliferation. During epidermal wound healing, NF1 gene expression was increased. However, the process of wound healing showed no apparent differences between NF1 patients and controls. Furthermore, an increased number of cells immunoreactive for active Ras-MAPK was demonstrated in vascular tissues of NF1 patients, but not in epidermal keratinocytes or dermal fibroblasts. The finding suggests that the NF1 protein functions as a Ras-GAP in some, but not all tissues

    Possibilities of improving the clinical value of immune checkpoint inhibitor therapies in cancer care by optimizing patient selection

    No full text
    Abstract Immune checkpoint inhibitor (ICI) therapies have become the most important medical therapies in many malignancies, such as melanoma, non-small-cell lung cancer, and urogenital cancers. However, due to generally low response rates of PD-(L)1 monotherapy, both PD-(L)1 combination therapies and novel therapeutics are under large-scale clinical evaluation. Thus far, clinical trials have rather suboptimally defined the patient population most likely to benefit from ICI therapy, and there is an unmet need for negative predictive markers aiming to reduce the number of non-responding patients in clinical practice. Furthermore, there is a strong need for basic tumor immunology research and innovative clinical trials to fully unleash the potential of ICI combinations for the benefit of patients

    Edenneen ei-pienisoluisen keuhkosyövän lääkehoito:molekyyligenetiikka, täsmälääkkeet ja immuno-onkologia tiennäyttäjinä

    No full text
    Tiivistelmä Valtaosa keuhkosyövistä on ei-pienisoluista keuhkosyöpää. Sen levinneen tautimuodon ennuste on merkittävästi parantunut uusien täsmälääkkeiden ja immuno-onkologisten hoitojen myötä. Ei-pienisoluisen keuhkosyövän hoidon optimaalinen suunnittelu vaatii molekyylipatologisia erityistutkimuksia, joiden edellytys on edustavien kudosnäytteiden otto. Vaikka vain pieni osa potilaista soveltuu täsmälääkehoitoihin, yksittäisen potilaan kannalta aktivoiviin mutaatioihin suunnattujen kohdennettujen hoitojen ennusteellinen merkitys on huomattava. Immuno-onkologisten hoitojen kohdepotilasjoukko on suuri, mutta vain murto-osa heistä hyötyy lääkehoidoista

    HER2 regulates cancer stem-like cell phenotype in ALK translocated NSCLC

    No full text
    Abstract We have previously shown that cancer stem-like cells (CSLCs) can mediate therapy resistance in ALK translocated lung cancers. HER2 has been linked to CSLCs in breast cancers and, therefore, we wanted to assess whether HER2 has a role in CSLCs in ALK translocated cancers. ALK translocated cell lines, H3122 and H2228, with variable sensitivity to ALK inhibition were used in the study. HER2 overexpression or knockdown was induced by retro- or lentiviral infections and cells were treated with pharmacological agents targeting HER2 and ALK signaling. Furthermore, tumorigenic properties of the cells were assessed in vitro using colony and sphere formation assays. In the ALK inhibitor sensitive H3122 cells, HER2 overexpression unaltered the primary response to ALK inhibition, but increased CSLC marker expression and enhanced colony and sphere formation and late AKT and ERK1/2 signaling recovery. In the ALK inhibitor semi-sensitive H2228 cells, HER2 knockdown reduced basal expression of CSLC markers, modestly increased sensitivity to ALK inhibition in colony and sphere formation assays, and reduced late AKT and ERK1/2 signaling recovery. In addition, HER2 induced cross activation of other ErbB-members of which HER3 followed most closely the CSLC marker expression and neuregulin-1, a HER3 ligand, or pan-ErbB inhibitor afatinib, were able to alter CSLC marker expression and colony formation. the present study suggests that HER2 has an important role in the regulation of the CSLC phenotype in ALK translocated lung cancers that is mainly orchestrated by HER2/HER3 heterodimers

    Does the buffer width matter:testing the effectiveness of forest certificates in the protection of headwater stream ecosystems

    No full text
    Abstract Forest harvest has multiple impacts on adjoining freshwater ecosystems, particularly headwater streams which typically receive minimal protection against forestry. However, evidence on the effectiveness of differently sized riparian buffers remains limited. Using data from two discrete regions of Finland, we assessed the effectiveness of riparian buffers in providing protection for the riparian and stream environment, benthic invertebrate diversity and species composition, and ecosystem functioning of boreal headwater streams. Our study included streams with both wide (>15 m) and narrow (<15 m) riparian buffers, enabling comparison of the two dominant forest certificates (FSC and PEFC). Compared to unharvested reference streams, nutrient concentrations as well as stream and riparian light intensity and temperature were higher at forestry-impacted sites. The amount of woody debris, cover of aquatic mosses and particulate organic matter standing stock were strongly reduced in streams draining harvested forests, especially in narrowly buffered streams. Changes in light and nutrient conditions induced a transition towards more autotrophic conditions. Organic matter decomposition rates were elevated in forestry-impacted sites only in the southern region. Forest harvest decreased macroinvertebrate diversity and evenness, and altered community composition in the northern region, but much weaker changes were observed in the southern region. Our findings support the retention of riparian buffers, but also confirm that their effectiveness depends on the environmental context and thus remains poorly predictable. Our results also suggest that the widely applied PEFC certification does not provide sufficient protection for stream ecosystems and more stringent protocols are needed to ensure ecological sustainability of forestry

    Association of rare immune-related adverse events to survival in advanced cancer patients treated with immune checkpoint inhibitors:a real-world single-center cohort study

    No full text
    Abstract Immune checkpoint inhibitors (ICIs) are associated with immune-related (ir) adverse events (AEs) resembling autoimmune diseases. In this retrospective cohort study of patients (pts) treated with ICIs at Oulu University Hospital from 2014–2020, we analysed the spectrum of severe irAEs and their prognostic nature, focusing on rare irAEs. Pts (n = 173) with lung cancer (n = 76, 43.9%), melanoma (n = 56, 32.4%), renal and bladder cancers (n = 34, 19.7%), head and neck cancers (n = 4, 2.3%), SCC (n = 2, 1.2%), and CRC (n = 1, 0.6%) receiving single anti-PD-(L)1 (n = 160) or combination (ICI-ICI n = 9, ICI-chemotherapy n = 4) therapy were included. The survival analysis focused on single anti-PD-(L)1-treated patients with melanoma, lung cancer, and renal and bladder cancers (n = 142). Grade ≥ 3 irAEs of multiple aetiology occurred in 29 patients treated with single-PD-L1 therapy (20.4%), which was associated with improved progression-free survival (PFS) (HR 0.50, CI 0.31–0.78) but not overall survival (OS) (HR 0.88, CI 0.52–1.50). Rare grade ≥ 3 events occurred in 10 (7.0%) pts with no association with PFS (HR 0.90, CI 0.42–1.94). Hence, the presence of rare grade ≥ 3 irAEs was associated with a tendency for inferior OS (HR 1.44, CI 0.66–3.11). Pts with rare grade ≥ 3 irAEs had inferior OS, possibly reflecting the delay in diagnostic workflow and the treatment of irAEs. One explanation for the high incidence of irAEs could be the Finnish population-based genetic variation affecting the immune system
    corecore