35 research outputs found

    Affective Adaptation to Repeated SIT and MICT Protocols in Insulin-Resistant Subjects

    Get PDF
    Introduction The aim of this study was to investigate affective responses to repeated sessions of sprint interval training (SIT) in comparison with moderate-intensity continuous training (MICT) in insulin-resistant subjects.Methods Twenty-six insulin-resistant adults (age, 49 (4) yr; 10 women) were randomized into SIT (n = 13) or MICT (n = 13) groups. Subjects completed six supervised training sessions within 2 wk (SIT session, 4-6 x 30 s all-out cycling/4-min recovery; MICT session, 40-60 min at 60% peak work load). Perceived exertion, stress, and affective state were assessed with questionnaires before, during and after each training session.Results Perceived exertion, displeasure, and arousal were higher during the SIT compared with MICT sessions (all P 0.05).Conclusions The perceptual and affective responses are more negative both during and acutely after SIT compared with MICT in untrained insulin-resistant adults. These responses, however, show significant improvements already within six training sessions, indicating rapid positive affective and physiological adaptations to continual exercise training, both SIT and MICT. These findings suggest that even very intense SIT is mentally tolerable alternative for untrained people with insulin resistance

    Intramyocellular lipid accumulation after sprint interval and moderate-intensity continuous training in healthy and diabetic subjects

    Get PDF
    The effects of sprint interval training (SIT) on intramyocellular (IMCL) and extramyocellular (EMCL) lipid accumulation are unclear. We tested the effects of SIT and moderate-intensity continuous training (MICT) on IMCL and EMCL accumulation in a randomized controlled setting in two different study populations; healthy untrained men (n 28) and subjects with type 2 diabetes (T2D) or prediabetes (n 26). Proton magnetic resonance spectroscopy (H-1 MRS) was used to determine IMCL and EMCL in the Tibialis anterior muscle (TA) before and after a 2-week exercise period. The exercise period comprised six sessions of SIT or MICT cycling on a cycle ergometer. IMCL increased after SIT compared to MICT (P = 0.042) in both healthy and T2D/prediabetic subjects. On EMCL the training intervention had no significant effect. In conclusion, IMCL serves as an important energy depot during exercise and can be extended by high intensity exercise. The effects of high intensity interval exercise on IMCL seem to be similar regardless of insulin sensitivity or the presence of T2D

    Finite Element Analysis of Bone and Experimental Validation

    Get PDF
    This chapter describes the application of the finite element (FE) method to bone tissues. The aspects that differ the most between bone and other materials’ FE analysis are the type of elements used, constitutive models, and experimental validation. These aspects are looked at from a historical evolution stand point. Several types of elements can be used to simulate similar bone structures and within the same analysis many types of elements may be needed to realistically simulate an anatomical part. Special attention is made to constitutive models, including the use of density-elasticity relationships made possible through CT-scanned images. Other more complex models are also described that include viscoelasticity and anisotropy. The importance of experimental validation is discussed, describing several methods used by different authors in this challenging field. The use of cadaveric human bones is not always possible or desirable and other options are described, as the use of animal or artificial bones. Strain and strain rate measuring methods are also discussed, such as rosette strain gauges and optical devices.publishe

    Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study

    Get PDF
    Electrophysiological studies of the human heart face the fundamental challenge that experimental data can be acquired only from patients with underlying heart disease. Regarding human atria, there exist sizable gaps in the understanding of the functional role of cellular Ca2+ dynamics, which differ crucially from that of ventricular cells, in the modulation of excitation-contraction coupling. Accordingly, the objective of this study was to develop a mathematical model of the human atrial myocyte that, in addition to the sarcolemmal (SL) ion currents, accounts for the heterogeneity of intracellular Ca2+ dynamics emerging from a structurally detailed sarcoplasmic reticulum (SR). Based on the simulation results, our model convincingly reproduces the principal characteristics of Ca2+ dynamics: 1) the biphasic increment during the upstroke of the Ca2+ transient resulting from the delay between the peripheral and central SR Ca2+ release, and 2) the relative contribution of SL Ca2+ current and SR Ca2+ release to the Ca2+ transient. In line with experimental findings, the model also replicates the strong impact of intracellular Ca2+ dynamics on the shape of the action potential. The simulation results suggest that the peripheral SR Ca2+ release sites define the interface between Ca2+ and AP, whereas the central release sites are important for the fire-diffuse-fire propagation of Ca2+ diffusion. Furthermore, our analysis predicts that the modulation of the action potential duration due to increasing heart rate is largely mediated by changes in the intracellular Na+ concentration. Finally, the results indicate that the SR Ca2+ release is a strong modulator of AP duration and, consequently, myocyte refractoriness/excitability. We conclude that the developed model is robust and reproduces many fundamental aspects of the tight coupling between SL ion currents and intracellular Ca2+ signaling. Thus, the model provides a useful framework for future studies of excitation-contraction coupling in human atrial myocytes

    Unmet needs and current and future approaches for osteoporotic patients at high risk of hip fracture

    Full text link
    corecore