219 research outputs found

    Reply to the Editor

    Get PDF

    Prospective Study on the Incidence of Bone Metastasis (BM) and Skeletal-Related Events (SREs) in Patients (pts) with Stage IIIB and IV Lung Cancer—CSP-HOR 13

    Get PDF
    Background:Bone metastasis (BM) is a frequent complication in patients with advanced lung cancer and it causes skeletal-related events (SREs). Our study aim is to prospectively investigate the incidence of BM, incidence and types of SRE, and predictive factors of BM and SREs.Methods:Newly diagnosed, advanced non–small-cell lung cancer (NSCLC) or small-cell lung cancer (SCLC) patients were enrolled into the study. Patients were followed up every 4 weeks to monitor the development of SREs. Treatment for lung cancer was performed at the discretion of the investigator.Results:Two hundred seventy-four patients were enrolled in this study between April 2007 and December 2009 from 12 institutions. Patients included 77 cases of SCLC and 197 of NSCLC (stage IIIB/IV = 73/124). Median follow-up time was 13.8 months. The incidence of BM at initial diagnosis was 48% in stage IV NSCLC and 40% in extensive stage (ED)-SCLC. Forty-five percent of patients who developed BM had SREs consisting of pathologic fracture (4.7%), radiation to bone (15.3%), spinal cord compression (1.1%), and hypercalcemia (2.2%). Multivariate analysis revealed that factors predicting BM are stage IV, performance status 1 or greater and higher bone alkaline phosphatase in NSCLC patients, higher lactate dehydrogenase, and lower parathyroid hormone–related peptide in SCLC patients. Factors predicting SREs were stage IV, age 64 or younger, and lower albumin in NSCLC patients. Multivariate analysis of SRE was not performed for SCLC because of the small number of events.Conclusion:Predictive factors should be taken into consideration in future randomized studies evaluating BM and SREs

    RSV replication is attenuated by counteracting expression of the suppressor of cytokine signaling (SOCS) molecules

    Get PDF
    AbstractHuman RSV causes an annual epidemic of respiratory tract illness in infants and in elderly. Mechanisms by which RSV antagonizes IFN-mediated antiviral responses include inhibition of type I IFN mRNA transcription and blocking signal transduction of JAK/STAT family members. The suppressor of cytokines signaling (SOCS) gene family utilizes a feedback loop to inhibit cytokine responses and block the activation of the JAK/STAT signaling pathway. To evaluate the potential of SOCS molecules to subvert the innate immune response to RSV infection, eight SOCS family genes were examined. RSV infection up-regulated SOCS1, SOCS3, and CIS mRNA expression in HEp-2 cells. Suppression of SOCS1, SOCS3 and CIS by short interfering ribonucleic acid (siRNA) inhibited viral replication. Furthermore, inhibition of SOCS1, SOCS3, or CIS activated type I IFN signaling by inducing STAT1/2 phosphorylation. These results suggest that RSV infection escapes the innate antiviral response by inducing SOCS1, SOCS3 or CIS expression in epithelial cells

    The Satb1 Protein Directs Hematopoietic Stem Cell Differentiation toward Lymphoid Lineages

    Get PDF
    SummaryHow hematopoietic stem cells (HSCs) produce particular lineages is insufficiently understood. We searched for key factors that direct HSC to lymphopoiesis. Comparing gene expression profiles for HSCs and early lymphoid progenitors revealed that Satb1, a global chromatin regulator, was markedly induced with lymphoid lineage specification. HSCs from Satb1-deficient mice were defective in lymphopoietic activity in culture and failed to reconstitute T lymphopoiesis in wild-type recipients. Furthermore, Satb1 transduction of HSCs and embryonic stem cells robustly promoted their differentiation toward lymphocytes. Whereas genes that encode Ikaros, E2A, and Notch1 were unaffected, many genes involved in lineage decisions were regulated by Satb1. Satb1 expression was reduced in aged HSCs with compromised lymphopoietic potential, but forced Satb1 expression partly restored that potential. Thus, Satb1 governs the initiating process central to the replenishing of lymphoid lineages. Such activity in lymphoid cell generation may be of clinical importance and useful to overcome immunosenescence

    Age-Dependent Association Between Modifiable Risk Factors and Incident Cardiovascular Disease

    Get PDF
    BACKGROUND: There have been limited data examining the age-dependent relationship of wide-range risk factors with the incidence of each subtype of cardiovascular disease (CVD) event. We assessed age-related associations between modifiable risk factors and the incidence of CVD. METHODS AND RESULTS: We analyzed 3 027 839 participants without a CVD history enrolled in the JMDC Claims Database (mean age, 44.8±11.0 years; 57.6% men). Each participant was categorized as aged 20 to 49 years (n=2 008 559), 50 to 59 years (n=712 273), and 60 to 75 years (n=307 007). Using Cox proportional hazards models and the relative risk reduction, we identified associations between risk factors and incident CVD, consisting of myocardial infarction, angina pectoris, stroke, and heart failure (HF). We assessed whether the association of risk factors for developing CVD would be modified by age cat-egory. Over a mean follow-up of 1133 days, 6315 myocardial infarction, 56 447 angina pectoris, 28 079 stroke, and 56 369 HF events were recorded. The incidence of myocardial infarction, angina pectoris, stroke, and HF increased with age category. Hazard ratios of obesity, hypertension, and diabetes in the multivariable Cox regression analyses for myocardial infarction, angina pectoris, stroke, and HF decreased with age category. The relative risk reduction of obesity, hypertension, and diabetes for CVD events decreased with age category. For example, the relative risk reduction of hypertension for HF decreased from 59.2% in participants aged 20 to 49 years to 38.1% in those aged 60 to 75 years. CONCLUSIONS: The contribution of modifiable risk factor to the development of CVD is greater in younger compared with older individuals. Preventive efforts for risk factor modification may be more effective in younger people.</p

    Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals

    Get PDF
    Gout is a common arthritis caused by elevated serum uric acid (SUA) levels. Here we investigated loci influencing SUA in a genome-wide meta-analysis with 121,745 Japanese subjects. We identified 8948 variants at 36 genomic loci (P<5 × 10–8) including eight novel loci. Of these, missense variants of SESN2 and PNPLA3 were predicted to be damaging to the function of these proteins; another five loci—TMEM18, TM4SF4, MXD3-LMAN2, PSORS1C1-PSORS1C2, and HNF4A—are related to cell metabolism, proliferation, or oxidative stress; and the remaining locus, LINC01578, is unknown. We also identified 132 correlated genes whose expression levels are associated with SUA-increasing alleles. These genes are enriched for the UniProt transport term, suggesting the importance of transport-related genes in SUA regulation. Furthermore, trans-ethnic meta-analysis across our own meta-analysis and the Global Urate Genetics Consortium has revealed 15 more novel loci associated with SUA. Our findings provide insight into the pathogenesis, treatment, and prevention of hyperuricemia/gout

    How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?

    Get PDF
    Plants exude strigolactones (SLs) to attract symbiotic arbuscular mycorrhizal fungi in the rhizosphere. Previous studies have demonstrated that phosphorus (P) deficiency, but not nitrogen (N) deficiency, significantly promotes SL exudation in red clover, while in sorghum not only P deficiency but also N deficiency enhances SL exudation. There are differences between plant species in SL exudation under P- and N-deficient conditions, which may possibly be related to differences between legumes and non-legumes. To investigate this possibility in detail, the effects of N and P deficiencies on SL exudation were examined in Fabaceae (alfalfa and Chinese milk vetch), Asteraceae (marigold and lettuce), Solanaceae (tomato), and Poaceae (wheat) plants. In alfalfa as expected, and unexpectedly in tomato, only P deficiency promoted SL exudation. In contrast, in Chinese milk vetch, a leguminous plant, and in the other non-leguminous plants examined, N deficiency as well as P deficiency enhanced SL exudation. Distinct reductions in shoot P levels were observed in plants grown under N deficiency, except for tomato, in which shoot P level was increased by N starvation, suggesting that the P status of the shoot regulates SL exudation. There seems to be a correlation between shoot P levels and SL exudation across the species/families investigated
    corecore