7 research outputs found

    Thin-shell theory based analysis of radially pressurized multiwall carbon nanotubes

    Get PDF
    The radial deformation of multiwall carbon nanotubes (MWNTs) under hydrostatic pressure is investi gated within the continuum elastic approximation. A thin shell theory, with accurate elastic constants and interwall couplings, allows us to estimate the critical pressure above which the original circular cross section transforms into radially corrugated ones. The emphasis is placed on the rigorous formula tion of the van der Waals interaction between adjacent walls, which we analyze using two different approaches. Possible consequences of the radial corrugation in the physical properties of pressurized MWNTs are also discussed

    Core-tube morphology of multiwall carbon nanotubes

    Full text link
    The present paper investigates the cross-sectional morphology of Multiwalled Carbon Nanotubes (MWNTs) restrained radially and circumferentially by an infinite surrounding elastic medium, subjected to uniform external hydrostatic pressure. In this study, a two-dimensional plane strain model is developed, assuming no variation of load and deformation along the tube axis. We find some characteristic cross-sectional shapes from the elastic buckling analysis. The effect of the surrounded elastic medium on the cross-sectional shape which occurs due to pressure buckling is focused on by the comparison with the shape for no elastic medium case in our discussion. It is suggested that in no embedded elastic medium cases, the cross-sectional shapes of inner tubes maintain circle or oval; on the other hand, an embedded medium may cause inner tube corrugation modes especially when the number of shells for MWNTs is small.Comment: 7 figures, 2 figure

    Diverse corrugation pattern in radially shrinking carbon nanotubes

    Get PDF
    Stable cross sections of multiwalled carbon nanotubes subjected to electron-beam irradiation are investigated in the realm of the continuum mechanics approximation. The self-healing nature of sp2 graphitic sheets implies that selective irradiation of the outermost walls causes their radial shrinkage with the remaining inner walls undamaged. The shrinking walls exert high pressure on the interior part of nanotubes, yielding a wide variety of radial-corrugation patterns (i.e. circumferentially wrinkling structures) in the cross section. All corrugation patterns can be classified into two deformation phases for which the corrugation amplitudes of the innermost wall differ significantly

    Diverse corrugation pattern in radially shrinking carbon nanotubes

    Get PDF
    Stable cross-sections of multi-walled carbon nanotubes subjected to electron-beam irradiation are investigated in the realm of the continuum mechanics approximation. The self-healing nature of sp2^2 graphitic sheets implies that selective irradiation of the outermost walls causes their radial shrinkage with the remaining inner walls undamaged. The shrinking walls exert high pressure on the interior part of nanotubes, yielding a wide variety of radial corrugation patterns ({\it i.e.,} circumferentially wrinkling structures) in the cross section. All corrugation patterns can be classified into two deformation phases for which the corrugation amplitudes of the innermost wall differ significantly.Comment: 8 pages, 4 figure

    Diverse corrugation pattern in radially shrinking carbon nanotubes

    No full text
    Stable cross sections of multiwalled carbon nanotubes subjected to electron-beam irradiation are investigated in the realm of the continuum mechanics approximation. The self-healing nature of sp2 graphitic sheets implies that selective irradiation of the outermost walls causes their radial shrinkage with the remaining inner walls undamaged. The shrinking walls exert high pressure on the interior part of nanotubes, yielding a wide variety of radial-corrugation patterns (i.e. circumferentially wrinkling structures) in the cross section. All corrugation patterns can be classified into two deformation phases for which the corrugation amplitudes of the innermost wall differ significantly.Peer Reviewe
    corecore