24 research outputs found

    Time is of the essence : Coupling sleep-wake and circadian neurobiology to the antidepressant effects of ketamine

    Get PDF
    Several studies have demonstrated the effectiveness of ketamine in rapidly alleviating depression and suicidal ideation. Intense research efforts have been undertaken to expose the precise mechanism underlying the antidepressant action of ketamine; however, the translation of findings into new clinical treatments has been slow. This translational gap is partially explained by a lack of understanding of the function of time and circadian timing in the complex neurobiology around ketamine. Indeed, the acute pharmacological effects of a single ketamine treatment last for only a few hours, whereas the antidepressant effects peak at around 24 hours and are sustained for the following few days. Numerous studies have investigated the acute and long-lasting neurobiological changes induced by ketamine; however, the most dramatic and fundamental change that the brain undergoes each day is rarely taken into consideration. Here, we explore the link between sleep and circadian regulation and rapid-acting antidepressant effects and summarize how diverse phenomena associated with ketamine’s antidepressant actions – such as cortical excitation, synaptogenesis, and involved molecular determinants – are intimately connected with the neurobiology of wake, sleep, and circadian rhythms. We review several recently proposed hypotheses about rapid antidepressant actions, which focus on sleep or circadian regulation, and discuss their implications for ongoing research. Considering these aspects may be the last piece of the puzzle necessary to gain a more comprehensive understanding of the effects of rapid-acting antidepressants on the brain.Several studies have demonstrated the effectiveness of ketamine in rapidly alleviating depression and suicidal ideation. Intense research efforts have been undertaken to expose the precise mechanism underlying the antidepressant action of ketamine; however, the translation of findings into new clinical treatments has been slow. This translational gap is partially explained by a lack of understanding of the function of time and circadian timing in the complex neurobiology around ketamine. Indeed, the acute pharmacological effects of a single ketamine treatment last for only a few hours, whereas the antidepressant effects peak at around 24 hours and are sustained for the following few days. Numerous studies have investigated the acute and long-lasting neurobiological changes induced by ketamine; however, the most dramatic and fundamental change that the brain undergoes each day is rarely taken into consideration. Here, we explore the link between sleep and circadian regulation and rapid -acting antidepressant effects and summarize how diverse phenomena associated with ketamine's antidepressant actions - such as cortical excitation, synaptogenesis, and involved molecular determinants - are intimately connected with the neurobiology of wake, sleep, and circadian rhythms. We review several recently proposed hypotheses about rapid antidepressant actions, which focus on sleep or circadian regulation, and discuss their implications for ongoing research. Considering these aspects may be the last piece of the puzzle necessary to gain a more comprehensive understanding of the effects of rapid-acting antidepressants on the brain. (c) 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).Peer reviewe

    Brief Isoflurane Anesthesia Produces Prominent Phosphoproteomic Changes in the Adult Mouse Hippocampus

    Get PDF
    Anesthetics are widely used in medical practice and experimental research, yet the neurobiological basis governing their effects remains obscure. We have here used quantitative phosphoproteomics to investigate the protein phosphorylation changes produced by a 30 min isoflurane anesthesia in the adult mouse hippocampus. Altogether 318 phosphorylation alterations in total of 237 proteins between sham and isoflurane anesthesia were identified. Many of the hit proteins represent primary pharmacological targets of anesthetics. However, findings also enlighten the role of several other proteins implicated in various biological processes including neuronal excitability, brain energy homeostasis, synaptic plasticity and transmission, and microtubule function as putative (secondary) targets of anesthetics. In particular, isoflurane increases glycogen synthase kinase-3 beta (GSK3 beta) phosphorylation at the inhibitory Ser(9) residue and regulates the phosphorylation of multiple proteins downstream and upstream of this promiscuous kinase that regulate diverse biological functions. Along with confirmatory Western blot data for GSK3 beta and p44/42-MAPK (mitogen-activated protein kinase; reduced phosphorylation of the activation loop), we observed increased phosphorylation of microtubule-associated protein 2 (MAP2) on residues (Thr(1620,1623)) that have been shown to render its dissociation from microtubules and alterations in microtubule stability. We further demonstrate that diverse anesthetics (sevoflurane, urethane, ketamine) produce essentially similar phosphorylation changes on GSK3 beta, p44/p42-MAPK, and MAP2 as observed with isoflurane. Altogether our study demonstrates the potential of quantitative phosphoproteomics to study the mechanisms of anesthetics (and other drugs) in the mammalian brain and reveals how already a relatively brief anesthesia produces pronounced phosphorylation changes in multiple proteins in the central nervous system.Peer reviewe

    Ketamine reduces electrophysiological network activity in cortical neuron cultures already at sub-micromolar concentrations-Impact on TrkB-ERK1/ 2 signaling

    Get PDF
    The dissociative anesthetic ketamine regulates cortical activity in a dose-dependent manner. Subanesthetic-dose ketamine has paradoxical excitatory effects which is proposed to facilitate brain-derived neurotrophic factor (BDNF) (a ligand of tropomyosin receptor kinase B, TrkB) signaling, and activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Previous data suggests that ketamine, at sub-micromolar concentrations, in-duces glutamatergic activity, BDNF release, and activation of ERK1/2 also on primary cortical neurons. We combined western blot analysis with multiwell-microelectrode array (mw-MEA) measurements to examine ketamine's concentration-dependent effects on network-level electrophysiological responses and TrkB-ERK1/2 phosphorylation in rat cortical cultures at 14 days in vitro. Ketamine did not cause an increase in neuronal network activity at sub-micromolar concentrations, but instead a decrease in spiking that was evident already at 500 nM concentration. TrkB phosphorylation was unaffected by the low concentrations, although BDNF elicited prominent phosphorylation response. High concentration of ketamine (10 mu M) strongly reduced spiking, bursting and burst duration, which was accompanied with decreased phosphorylation of ERK1/2 but not TrkB. Notably, robust increases in spiking and bursting activity could be produced with carbachol, while it did not affect phosphorylation of TrkB or ERK1/2. Diazepam abolished neuronal activity, which was accompanied by reduced ERK1/2 phosphorylation without change on TrkB. In conclusion, sub-micromolar ketamine concentrations did not cause an increase in neuronal network activity or TrkB-ERK1/2 phosphorylation in cortical neuron cultures that readily respond to exogenously applied BDNF. Instead, pharmacological inhibition of network activity can be readily observed with high concentration of ketamine and it is associated with reduced ERK1/2 phosphorylation.Peer reviewe

    Synaptic plasticity via receptor tyrosine kinase/G-protein-coupled receptor crosstalk

    No full text
    Summary: Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and the physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK) TrkB and the G-protein-coupled receptor (GPCR) metabotropic glutamate receptor 5 (mGluR5) together mediate hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode switch that drives BDNF-dependent sustained, oscillatory Ca2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gαq-GTP, released by mGluR5, to enable physiologically relevant RTK/GPCR crosstalk
    corecore