32 research outputs found
Space‐Scale Resolved Surface Fluxes Across a Heterogeneous, Mid‐Latitude Forested Landscape
The Earth\u27s surface is heterogeneous at multiple scales owing to spatial variability in various properties. The atmospheric responses to these heterogeneities through fluxes of energy, water, carbon, and other scalars are scale-dependent and nonlinear. Although these exchanges can be measured using the eddy covariance technique, widely used tower-based measurement approaches suffer from spectral losses in lower frequencies when using typical averaging times. However, spatially resolved measurements such as airborne eddy covariance measurements can detect such larger scale (meso-β, meso-γ) transport. To evaluate the prevalence and magnitude of these flux contributions, we applied wavelet analysis to airborne flux measurements over a heterogeneous mid-latitude forested landscape, interspersed with open water bodies and wetlands. The measurements were made during the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors intensive field campaign. We ask, how do spatial scales of surface-atmosphere fluxes vary over heterogeneous surfaces across the day and across seasons? Measured fluxes were separated into smaller-scale turbulent and larger-scale mesoscale contributions. We found significant mesoscale contributions to sensible and latent heat fluxes through summer to autumn which would not be resolved in single-point tower measurements through traditional time-domain half-hourly Reynolds decomposition. We report scale-resolved flux transitions associated with seasonal and diurnal changes of the heterogeneous study domain. This study adds to our understanding of surface-atmospheric interactions over unstructured heterogeneities and can help inform multi-scale model-data integration of weather and climate models at a sub-grid scale
Shortened Tracer Uptake Time in GA-68-DOTATOC-PET of Meningiomas Does Not Impair Diagnostic Accuracy and PET Volume Definition
Ga-68-DOTATOC-PET/MRI can affect the planning target volume (PTV) definition of meningiomas before radiosurgery. A shorter tracer uptake time before image acquisition could allow the examination of more patients. The aim of this study was to investigate if shortening uptake time is possible without compromising diagnostic accuracy and PET volume. Fifteen patients (f = 12; mean age 52 years (34-80 years)) with meningiomas were prospectively examined with dynamic [68Ga]Ga-68-labeled [DOTA0-Phe1-Tyr3] octreotide (Ga-68-DOTATOC)-PET/MRI over 70 min before radiosurgery planning. Meningiomas were delineated manually in the PET dataset. PET volumes at each time point were compared to the reference standard 60 min post tracer injection (p.i.) using the Friedman test followed by a Wilcoxon signed-rank test and Bonferroni correction. In all patients, the earliest time point with 100% lesion detection compared to 60 min p.i. was identified. PET volumes did not change significantly from 15 min p.i. (p = 1.0) compared to 60 min p.i. The earliest time point with 100% lesion detection in all patients was 10 min p.i. In patients with meningiomas undergoing Ga-68-DOTATOC-PET, the tracer uptake time can safely be reduced to 15 min p.i. with comparable PET volume and 100% lesion detection compared to 60 min p.i
Country Concepts and the Rational Actor Trap: Limitations to Strategic Management of International NGOs
Growing criticism of inefficient development aid demanded new planning instruments of donors, including international NGOs (INGOs). A reorientation from isolated project-planning towards holistic country concepts and the increasing rationality of a result-orientated planning process were seen as answer. However, whether these country concepts - newly introduced by major INGOs too - have increased the efficiency of development cooperation is open to question. Firstly, there have been counteracting external factors, like the globalization of the aid business, that demanded structural changes in the composition of INGO portfolios towards growing short-term humanitarian aid; this was hardly compatible with the requirements of medium-term country planning. Secondly, the underlying vision of rationality as a remedy for the major ills of development aid was in itself a fallacy. A major change in the methodology of planning, closely connected with a shift of emphasis in the approach to development cooperation, away from project planning and service delivery, towards supporting the socio-cultural and political environment of the recipient communities, demands a reorientation of aid management: The most urgent change needed is by donors, away from the blinkers of result-orientated planning towards participative organizational cultures of learning.Des critiques croissantes de l'aide au développement inefficace exigent de nouveaux instruments de planification des bailleurs de fonds, y compris les ONG internationales (ONGI). Une réorientation de la planification des projets isolés vers des concepts holistiques de la planification de l’aide par pays ainsi que la rationalité croissante d'un processus de planification orientée vers les résultats ont été considérés comme réponse. Toutefois, si ces concepts de pays - nouvellement introduites par les grandes OING eux aussi - ont augmenté l'efficacité de la coopération au développement est ouvert à la question. Tout d'abord, il y a eu l’impact des facteurs externes, comme la mondialisation de l'entreprise de l'aide, qui a exigé des changements structurels dans la composition des portefeuilles des OING vers la croissance de l'aide humanitaire à court terme. Cela était difficilement compatible avec les exigences de l'aménagement du territoire à moyen terme. Deuxièmement, la vision sous-jacente de la rationalité accrue de la planification, concentré sur les resultats, comme un remède pour les grands maux de l'aide au développement était en soi une erreur. Un changement majeur dans la méthodologie de la planification, étroitement liée à un changement d'orientation dans l'approche de la coopération au développement, qui n’est pas concentrer sur planification du projet et la prestation de services, mais qui soutienne l'environnement socio-culturel et politique des communautés bénéficiaires, exige une réorientation de la gestion de l’aide: Le changement le plus urgent est un changement par les donateurs eux-mêmes, qui devrait implanter des cultures de collaboration étroit avec les partenaires et la population locale
Drivers of Change or Cut-Throat Competitors? Challenging Cultures of Innovation of Chinese and Nigerian Migrant Entrepreneurs in West Africa
L'afflux remarquable des entrepreneurs migrants chinois dans différents pays d'Afrique occidentale au cours des dernières années a été heurtée à une résistance de plus en plus farouche par des entrepreneurs locaux établis. Que le premiers ont un avantage concurrentiel sur ce dernier en raison de traits socio-culturels distinctifs, ou si l'efficacité supposée chinoise est juste une caractéristique de toutes les diasporas mercantiles, est ouvert à la question. Cette étude exploratoire des migrants entrepreneuriales chinois et nigérians au Ghana et au Bénin tente de répondre à cette question. Apparemment, les forces culturels des agents du changement migrants ne sont pas limités à des systèmes de valeurs héritées ou religions, comme une éthique protestante ou le confucianisme, mais ils sont adaptés en permanence et ont inventé de nouveau par des réseaux transnationaux de la migration dans un monde globalisé. Il n'y a aucune preuve d'une prétendue supériorité de la culture d’innovation chinois par rapport aux cultures d’innovation africains des migrants entrepreneuriales. Plutôt, il existe une capacité accrue d'innovation d'une diaspora mercantile en général vis à vis des entrepreneurs locaux, indépendamment de l'origine de la culture nationale dans lequel il est intégré. En outre, la rivalité des entrepreneurs migrants chinois et nigérians dans les marchés africains ne conduit pas nécessairement à la concurrence coupe-gorge souvent suspectée sous l'impact de la mondialisation. Souvent, les deux groupes agissent plutôt complémentaires. Cela contribue, sous certaines conditions, même à la réduction de la pauvreté dans le pays d'accueil
Detrended Fluctuation Analysis in the prediction of type 2 diabetes mellitus in patients at risk: Model optimization and comparison with other metrics
[EN] Complexity analysis of glucose time series with Detrended Fluctuation Analysis (DFA) has been proved to be useful for the prediction of type 2 diabetes mellitus (T2DM) development. We propose a modified DFA algorithm, review some of its characteristics and compare it with other metrics derived from continuous glucose monitorization in this setting. Several issues of the DFA algorithm were evaluated: (1) Time windowing: the best predictive value was obtained including all time-windows from 15 minutes to 24 hours. (2) Influence of circadian rhythms: for 48-hour glucometries, DFA alpha scaling exponent was calculated on 24hour sliding segments (1-hour gap, 23-hour overlap), with a median coefficient of variation of 3.2%, which suggests that analysing time series of at least 24-hour length avoids the influence of circadian rhythms. (3) Influence of pretreatment of the time series through integration: DFA without integration was more sensitive to the introduction of white noise and it showed significant predictive power to forecast the development of T2DM, while the pretreated time series did not. (4) Robustness of an interpolation algorithm for missing values: The modified DFA algorithm evaluates the percentage of missing values in a time series. Establishing a 2% error threshold, we estimated the number and length of missing segments that could be admitted to consider a time series as suitable for DFA analysis. For comparison with other metrics, a Principal Component Analysis was performed and the results neatly tease out four different components. The first vector carries information concerned with variability, the second represents mainly DFA alpha exponent, while the third and fourth vectors carry essentially information related to the two "pre-diabetic behaviours" (impaired fasting glucose and impaired glucose tolerance). The scaling exponent obtained with the modified DFA algorithm proposed has significant predictive power for the development of T2DM in a high-risk population compared with other variability metrics or with the standard DFA algorithm.This study has been funded by Instituto de Salud Carlos III through the project PI17/00856 (Co-funded by the European Regional Development Fund, A way to make Europe). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Colás, A.; Vigil, L.; Vargas, B.; Cuesta Frau, D.; Varela, M. (2019). Detrended Fluctuation Analysis in the prediction of type 2 diabetes mellitus in patients at risk: Model optimization and comparison with other metrics. PLoS ONE. 14(12):1-15. https://doi.org/10.1371/journal.pone.0225817S1151412Goldstein, B., Fiser, D. H., Kelly, M. M., Mickelsen, D., Ruttimann, U., & Pollack, M. M. (1998). Decomplexification in critical illness and injury: Relationship between heart rate variability, severity of illness, and outcome. Critical Care Medicine, 26(2), 352-357. doi:10.1097/00003246-199802000-00040Varela, M. (2008). The route to diabetes: Loss of complexity in the glycemic profile from health through the metabolic syndrome to type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, Volume 1, 3-11. doi:10.2147/dmso.s3812Vikman, S., Mäkikallio, T. H., Yli-Mäyry, S., Pikkujämsä, S., Koivisto, A.-M., Reinikainen, P., … Huikuri, H. V. (1999). Altered Complexity and Correlation Properties of R-R Interval Dynamics Before the Spontaneous Onset of Paroxysmal Atrial Fibrillation. Circulation, 100(20), 2079-2084. doi:10.1161/01.cir.100.20.2079Wang, H., Naghavi, M., Allen, C., Barber, R. M., Bhutta, Z. A., Carter, A., … Coates, M. M. (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1459-1544. doi:10.1016/s0140-6736(16)31012-1Saudek, C. D., Derr, R. L., & Kalyani, R. R. (2006). Assessing Glycemia in Diabetes Using Self-monitoring Blood Glucose and Hemoglobin A1c. JAMA, 295(14), 1688. doi:10.1001/jama.295.14.1688Monnier, L., Colette, C., & Owens, D. R. (2008). Glycemic Variability: The Third Component of the Dysglycemia in Diabetes. Is it Important? How to Measure it? Journal of Diabetes Science and Technology, 2(6), 1094-1100. doi:10.1177/193229680800200618Abdul-Ghani, M. A., Tripathy, D., & DeFronzo, R. A. (2006). Contributions of -Cell Dysfunction and Insulin Resistance to the Pathogenesis of Impaired Glucose Tolerance and Impaired Fasting Glucose. Diabetes Care, 29(5), 1130-1139. doi:10.2337/dc05-2179(2017). 2. Classification and Diagnosis of Diabetes:Standards of Medical Care in Diabetes—2018. Diabetes Care, 41(Supplement 1), S13-S27. doi:10.2337/dc18-s002Tabák, A. G., Herder, C., Rathmann, W., Brunner, E. J., & Kivimäki, M. (2012). Prediabetes: a high-risk state for diabetes development. The Lancet, 379(9833), 2279-2290. doi:10.1016/s0140-6736(12)60283-9DeFronzo, R. A., Banerji, M. A., Bray, G. A., Buchanan, T. A., Clement, S., … Tripathy, D. (2009). Determinants of glucose tolerance in impaired glucose tolerance at baseline in the Actos Now for Prevention of Diabetes (ACT NOW) study. Diabetologia, 53(3), 435-445. doi:10.1007/s00125-009-1614-2Nathan, D. M., Davidson, M. B., DeFronzo, R. A., Heine, R. J., Henry, R. R., Pratley, R., & Zinman, B. (2007). Impaired Fasting Glucose and Impaired Glucose Tolerance: Implications for care. Diabetes Care, 30(3), 753-759. doi:10.2337/dc07-9920Ogata, H., Tokuyama, K., Nagasaka, S., Tsuchita, T., Kusaka, I., Ishibashi, S., … Yamamoto, Y. (2012). The lack of long-range negative correlations in glucose dynamics is associated with worse glucose control in patients with diabetes mellitus. Metabolism, 61(7), 1041-1050. doi:10.1016/j.metabol.2011.12.007Kohnert, K.-D. (2015). Utility of different glycemic control metrics for optimizing management of diabetes. World Journal of Diabetes, 6(1), 17. doi:10.4239/wjd.v6.i1.17García Maset, L., González, L. B., Furquet, G. L., Suay, F. M., & Marco, R. H. (2016). Study of Glycemic Variability Through Time Series Analyses (Detrended Fluctuation Analysis and Poincaré Plot) in Children and Adolescents with Type 1 Diabetes. Diabetes Technology & Therapeutics, 18(11), 719-724. doi:10.1089/dia.2016.0208Service, F. J., O’Brien, P. C., & Rizza, R. A. (1987). Measurements of Glucose Control. Diabetes Care, 10(2), 225-237. doi:10.2337/diacare.10.2.225Goldberger, A. L., Amaral, L. A. N., Hausdorff, J. M., Ivanov, P. C., Peng, C.-K., & Stanley, H. E. (2002). Fractal dynamics in physiology: Alterations with disease and aging. Proceedings of the National Academy of Sciences, 99(Supplement 1), 2466-2472. doi:10.1073/pnas.012579499Crenier, L., Lytrivi, M., Van Dalem, A., Keymeulen, B., & Corvilain, B. (2016). Glucose Complexity Estimates Insulin Resistance in Either Nondiabetic Individuals or in Type 1 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 101(4), 1490-1497. doi:10.1210/jc.2015-4035Rodríguez de Castro, C., Vigil, L., Vargas, B., García Delgado, E., García Carretero, R., Ruiz-Galiana, J., & Varela, M. (2016). Glucose time series complexity as a predictor of type 2 diabetes. Diabetes/Metabolism Research and Reviews, 33(2), e2831. doi:10.1002/dmrr.2831Weber, C., & Schnell, O. (2009). The Assessment of Glycemic Variability and Its Impact on Diabetes-Related Complications: An Overview. Diabetes Technology & Therapeutics, 11(10), 623-633. doi:10.1089/dia.2009.0043Pincus, S. M., Gladstone, I. M., & Ehrenkranz, R. A. (1991). A regularity statistic for medical data analysis. Journal of Clinical Monitoring, 7(4), 335-345. doi:10.1007/bf01619355Richman, J. S. (2007). Sample Entropy Statistics and Testing for Order in Complex Physiological Signals. Communications in Statistics - Theory and Methods, 36(5), 1005-1019. doi:10.1080/03610920601036481Platiša, M. M., Bojić, T., Pavlović, S. U., Radovanović, N. N., & Kalauzi, A. (2016). Generalized Poincaré Plots-A New Method for Evaluation of Regimes in Cardiac Neural Control in Atrial Fibrillation and Healthy Subjects. Frontiers in Neuroscience, 10. doi:10.3389/fnins.2016.00038García-Puig, J., Ruilope, L. M., Luque, M., Fernández, J., Ortega, R., & Dal-Ré, R. (2006). Glucose Metabolism in Patients with Essential Hypertension. The American Journal of Medicine, 119(4), 318-326. doi:10.1016/j.amjmed.2005.09.010Lepot, M., Aubin, J.-B., & Clemens, F. (2017). Interpolation in Time Series: An Introductive Overview of Existing Methods, Their Performance Criteria and Uncertainty Assessment. Water, 9(10), 796. doi:10.3390/w9100796Eke, A., Hermán, P., Bassingthwaighte, J., Raymond, G., Percival, D., Cannon, M., … Ikrényi, C. (2000). Physiological time series: distinguishing fractal noises from motions. Pflügers Archiv - European Journal of Physiology, 439(4), 403-415. doi:10.1007/s004249900135Eke, A., Herman, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of complexity in temporal physiological signals. Physiological Measurement, 23(1), R1-R38. doi:10.1088/0967-3334/23/1/201King, A. B., Philis-Tsimikas, A., Kilpatrick, E. S., Langbakke, I. H., Begtrup, K., & Vilsbøll, T. (2017). A Fixed Ratio Combination of Insulin Degludec and Liraglutide (IDegLira) Reduces Glycemic Fluctuation and Brings More Patients with Type 2 Diabetes Within Blood Glucose Target Ranges. Diabetes Technology & Therapeutics, 19(4), 255-264. doi:10.1089/dia.2016.0405Colas, A., Vigil, L., Rodríguez de Castro, C., Vargas, B., & Varela, M. (2018). New insights from continuous glucose monitoring into the route to diabetes. Diabetes/Metabolism Research and Reviews, 34(5), e3002. doi:10.1002/dmrr.3002Henriques, T., Munshi, M. N., Segal, A. R., Costa, M. D., & Goldberger, A. L. (2014). «Glucose-at-a-Glance». Journal of Diabetes Science and Technology, 8(2), 299-306. doi:10.1177/1932296814524095Hinton, P. R. (2004). Statistics Explained. doi:10.4324/9780203496787Van Cauter, E., Blackman, J. D., Roland, D., Spire, J. P., Refetoff, S., & Polonsky, K. S. (1991). Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. Journal of Clinical Investigation, 88(3), 934-942. doi:10.1172/jci115396Qian, J., & Scheer, F. A. J. L. (2016). Circadian System and Glucose Metabolism: Implications for Physiology and Disease. Trends in Endocrinology & Metabolism, 27(5), 282-293. doi:10.1016/j.tem.2016.03.00
The Colorado Student Space Weather Experiment (CSSWE) On-Orbit Performance
The Colorado Student Space Weather Experiment is a 3-unit (10cm x 10cm x 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to \u3e3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with CU professors and engineers at the Laboratory for Atmospheric and Space Physics (LASP), CSSWE was designed, built, tested, and delivered in 3 years. On September 13, 2012, CSSWE was inserted to a 477 x 780 km, 65° orbit as a secondary payload on an Atlas V through the NASA Educational Launch of Nanosatellites (ELaNa) program. The first successful contact with CSSWE was made within a few hours of launch. CSSWE then completed a 20 day system commissioning phase which validated the performance of the communications, power, and attitude control systems. This was immediately followed by an accelerated 24 hour REPTile commissioning period in time for a geomagnetic storm. The high quality, low noise science data return from REPTile is complementary to the NASA Van Allen Probes mission, which launched two weeks prior to CSSWE. On January 5, 2013, CSSWE completed 90 days of on-orbit science operations, achieving the baseline goal for full mission success. As the CubeSat continues to operate in its extended mission phase, the CSSWE team is working to understand and validate our design with on-orbit data. The power, data, and link budgets estimated prior to launch are found to be an accurate estimate of the on-orbit performance. Satellite interior temperatures are found to remain within their design range, even during periods of multi-week long insolation. However, not all systems have behaved as expected; an on-orbit anomaly occurred ten days after science operations began. An additional innovation is autonomous satellite operation, enabling uplink and downlink during all 8+ CSSWE passes per day and increasing monitoring capability. This was implemented in December to accommodate the lack of student operators over the holiday break and has been exceptionally beneficial. The student-led CSSWE team has grown in experience and knowledge throughout design, build, test, delivery, launch and operations of this small satellite. An overview of the CSSWE system, on-orbit performance and lessons learned will be presented
Conducting Science with a CubeSat: The Colorado Student Space Weather Experiment
Energetic particles, electrons and protons either directly associated with solar flares or trapped in the terrestrial radiation belt, have a profound space weather impact. A 3U CubeSat mission with a single instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), has been selected by the National Science Foundation to address fundamental questions pertaining to the relationship between solar flares and energetic particles. These questions include the acceleration and loss mechanisms of outer radiation belt electrons. The Colorado Student Space Weather Experiment operating in a highly inclined low earth orbit, will measure differential fluxes of relativistic electrons in the energy range of 0.5-2.9 MeV and protons in 10-40 MeV. This project is a collaborative effort between the Laboratory for Atmospheric and Space Physics and the Department of Aerospace Engineering Sciences at the University of Colorado, which includes the integration of students, faculty, and professional engineers