900 research outputs found
Collisional stability of a three-component degenerate Fermi gas
We report on the creation of a degenerate Fermi gas consisting of a balanced
mixture of atoms in three different hyperfine states of Li. This new system
consists of three distinguishable Fermions with different and tunable
interparticle scattering lengths , and . We are able
to prepare samples containing atoms in each state at a
temperature of about nK, which corresponds to . We
investigated the collisional stability of the gas for magnetic fields between 0
and 600 G and found a prominent loss feature at 130 G. From lifetime
measurements we determined three-body loss coefficients, which vary over nearly
three orders of magnitude
The Saito-Kurokawa lifting and Darmon points
Let E_{/_\Q} be an elliptic curve of conductor with and let
be its associated newform of weight 2. Denote by the -adic
Hida family passing though , and by its -adic
Saito-Kurokawa lift. The -adic family of Siegel modular forms
admits a formal Fourier expansion, from which we can define a family of
normalized Fourier coefficients indexed by positive
definite symmetric half-integral matrices of size . We relate
explicitly certain global points on (coming from the theory of
Stark-Heegner points) with the values of these Fourier coefficients and of
their -adic derivatives, evaluated at weight .Comment: 14 pages. Title change
Short-flow-time expansion of quark bilinears through next-to-next-to-leading order QCD
The gradient-flow formalism proves to be a useful tool in lattice
calculations of quantum chromodynamics. For example, it can be used as a scheme
to renormalize composite operators by inverting the short-flow-time expansion
of the corresponding flowed operators. In this paper, we consider the
short-flow-time expansion of five quark bilinear operators, the scalar,
pseudoscalar, vector, axialvector, and tensor currents, and compute the
matching coefficients through next-to-next-to-leading order QCD. Among other
applications, our results constitute one ingredient for calculating bag
parameters of mesons within the gradient-flow formalism on the lattice.Comment: 27 pages, 5 figures, 1 ancillary fil
On the special values of certain L-series related to half-integral weight modular forms
Let h be a cuspidal Hecke eigenform of half-integral weight, and En/2+1/2 be Cohen’s Eisenstein series of weight n/2+1/2. For a Dirichlet character χ we define a certain linear combination R(χ)(s, h,En/+1/2) of the Rankin-Selberg convolution products of h and En/2+1/2 twisted by Dirichlet characters related with χ. We then prove a certain algebraicity result for R(χ)(l, h,En/2+1/2) with l integers
A single atom detector integrated on an atom chip: fabrication, characterization and application
We describe a robust and reliable fluorescence detector for single atoms that
is fully integrated into an atom chip. The detector allows spectrally and
spatially selective detection of atoms, reaching a single atom detection
efficiency of 66%. It consists of a tapered lensed single-mode fiber for
precise delivery of excitation light and a multi-mode fiber to collect the
fluorescence. The fibers are mounted in lithographically defined holding
structures on the atom chip. Neutral 87Rb atoms propagating freely in a
magnetic guide are detected and the noise of their fluorescence emission is
analyzed. The variance of the photon distribution allows to determine the
number of detected photons / atom and from there the atom detection efficiency.
The second order intensity correlation function of the fluorescence shows
near-perfect photon anti-bunching and signs of damped Rabi-oscillations. With
simple improvements one can boost the detection efficiency to > 95%.Comment: 24 pages, 11 figure
Manipulating ultracold atoms with a reconfigurable nanomagnetic system of domain walls
The divide between the realms of atomic-scale quantum particles and
lithographically-defined nanostructures is rapidly being bridged. Hybrid
quantum systems comprising ultracold gas-phase atoms and substrate-bound
devices already offer exciting prospects for quantum sensors, quantum
information and quantum control. Ideally, such devices should be scalable,
versatile and support quantum interactions with long coherence times.
Fulfilling these criteria is extremely challenging as it demands a stable and
tractable interface between two disparate regimes. Here we demonstrate an
architecture for atomic control based on domain walls (DWs) in planar magnetic
nanowires that provides a tunable atomic interaction, manifested experimentally
as the reflection of ultracold atoms from a nanowire array. We exploit the
magnetic reconfigurability of the nanowires to quickly and remotely tune the
interaction with high reliability. This proof-of-principle study shows the
practicability of more elaborate atom chips based on magnetic nanowires being
used to perform atom optics on the nanometre scale.Comment: 4 pages, 4 figure
An integrated atom-photon junction
Photonic chips that integrate guides, switches, gratings and other
components, process vast amounts of information rapidly on a single device. A
new branch of this technology becomes possible if the light is coupled to cold
atoms in a junction of small enough cross section, so that small numbers of
photons interact appreciably with the atoms. Cold atoms are among the most
sensitive of metrological tools and their quantum nature also provides a basis
for new information processing methods. Here we demonstrate a photonic chip
which provides multiple microscopic junctions between atoms and photons. We use
the absorption of light at a junction to reveal the presence of one atom on
average. Conversely, we use the atoms to probe the intensity and polarisation
of the light. Our device paves the way for a new type of chip with
interconnected circuits of atoms and photons.Comment: 5 pages, 4 figure. Submitted to Nature Photonic
Monte Carlo simulation of expected outcomes with the AcrySof® toric intraocular lens
<p>Abstract</p> <p>Background</p> <p>To use a Monte Carlo simulation to predict postoperative results with the AcrySof<sup>® </sup>Toric lens, evaluating the likelihood of over- or under-correction using various toric lens selection criteria.</p> <p>Methods</p> <p>Keratometric data were obtained from a large patient population with preoperative corneal astigmatism <= 2.50D (2,000 eyes). The probability distributions for toric marking accuracy, surgically induced astigmatism and lens rotation were estimated using available data. Anticipated residual astigmatism was calculated using a Monte Carlo simulation under two different lens selection scenarios.</p> <p>Results</p> <p>This simulation demonstrated that random errors in alignment, surgically induced astigmatism and lens rotation slightly reduced the overall effect of the toric lens. Residual astigmatism was statistically significantly higher under the simulation of surgery relative to an exact calculation (p < 0.05). The simulation also demonstrated that more aggressive lens selection criteria could produce clinically significant reductions in residual astigmatism in a high percentage of patients.</p> <p>Conclusion</p> <p>Monte Carlo simulation suggests that surgical variability and lens orientation/rotation variability may combine to produce small reductions in the correction achieved with the AcrySof<sup>® </sup>Toric<sup>® </sup>IOL. Adopting more aggressive lens selection criteria may yield significantly lower residual astigmatism values for many patients, with negligible overcorrections. Surgeons are encouraged to evaluate their AcrySof<sup>® </sup>Toric<sup>® </sup>outcomes to determine if they should modify their individual lens selection criteria, or their default surgically induced astigmatism value, to benefit their patients.</p
- …