8,154 research outputs found

    Edge Electron Gas

    Full text link
    The uniform electron gas, the traditional starting point for density-based many-body theories of inhomogeneous systems, is inappropriate near electronic edges. In its place we put forward the appropriate concept of the edge electron gas.Comment: 4 pages RevTex with 7 ps-figures included. Minor changes in title,text and figure

    Ground-state energy and Wigner crystallization in thick 2D-electron systems

    Full text link
    The ground state energy of the 2-D Wigner crystal is determined as a function of the thickness of the electron layer and the crystal structure. The method of evaluating the exchange-correlation energy is tested using known results for the infinitely-thin 2D system. Two methods, one based on the local-density approximation(LDA), and another based on the constant-density approximation (CDA) are established by comparing with quantum Monte-Carlo (QMC) results. The LDA and CDA estimates for the Wigner transition of the perfect 2D fluid are at rs=38r_s=38 and 32 respectively, compared with rs=35±5r_s=35\pm5 from QMC. For thick-2D layers as found in Hetero-junction-insulated-gate field-effect transistors, the LDA and CDA predictions of the Wigner transition are at rs=20.5r_s=20.5 and 15.5 respectively. Impurity effects are not considered here.Comment: Last figure and Table are modified in the revised version. Conclusions regarding the Wigner transition in thick layers are modified in the revised version. Latex manuscript, four figure

    Density-functional theory of polar insulators

    Get PDF
    We examine the density-functional theory of macroscopic insulators, obtained in the large-cluster limit or under periodic boundary conditions. For polar crystals, we find that the two procedures are not equivalent. In a large-cluster case, the exact exchange-correlation potential acquires a homogeneous ``electric field'' which is absent from the usual local approximations, and the Kohn-Sham electronic system becomes metallic. With periodic boundary conditions, such a field is forbidden, and the polarization deduced from Kohn-Sham wavefunctions is incorrect even if the exact functional is used

    The Decay Properties of the Finite Temperature Density Matrix in Metals

    Full text link
    Using ordinary Fourier analysis, the asymptotic decay behavior of the density matrix F(r,r') is derived for the case of a metal at a finite electronic temperature. An oscillatory behavior which is damped exponentially with increasing distance between r and r' is found. The decay rate is not only determined by the electronic temperature, but also by the Fermi energy. The theoretical predictions are confirmed by numerical simulations

    Spin hydrodynamics in the S = 1/2 anisotropic Heisenberg chain

    Full text link
    We study the finite-temperature dynamical spin susceptibility of the one-dimensional (generalized) anisotropic Heisenberg model within the hydrodynamic regime of small wave vectors and frequencies. Numerical results are analyzed using the memory function formalism with the central quantity being the spin-current decay rate gamma(q,omega). It is shown that in a generic nonintegrable model the decay rate is finite in the hydrodynamic limit, consistent with normal spin diffusion modes. On the other hand, in the gapless integrable model within the XY regime of anisotropy Delta < 1 the behavior is anomalous with vanishing gamma(q,omega=0) proportional to |q|, in agreement with dissipationless uniform transport. Furthermore, in the integrable system the finite-temperature q = 0 dynamical conductivity sigma(q=0,omega) reveals besides the dissipationless component a regular part with vanishing sigma_{reg}(q=0,omega to 0) to 0

    Ensemble density functional theory of the fractional quantum Hall effect

    Full text link
    We develop an ensemble density functional theory for the fractional quantum Hall effect using a local density approximation. Model calculations for edge reconstructions of a spin-polarized quantum dot give results in good agreement with semiclassical and Hartree-Fock calculations, and with small system numerical diagonalizations. This establishes the usefulness of density functional theory to study the fractional quantum Hall effect, which opens up the possibility of studying inhomegeneous systems with many more electrons than has heretofore been possible.Comment: Improved discussion of ensemble density functional theory. 4 pages plus 3 postscript figures, uses latex with revtex. Contact [email protected]

    Time Dependent Floquet Theory and Absence of an Adiabatic Limit

    Full text link
    Quantum systems subject to time periodic fields of finite amplitude, lambda, have conventionally been handled either by low order perturbation theory, for lambda not too large, or by exact diagonalization within a finite basis of N states. An adiabatic limit, as lambda is switched on arbitrarily slowly, has been assumed. But the validity of these procedures seems questionable in view of the fact that, as N goes to infinity, the quasienergy spectrum becomes dense, and numerical calculations show an increasing number of weakly avoided crossings (related in perturbation theory to high order resonances). This paper deals with the highly non-trivial behavior of the solutions in this limit. The Floquet states, and the associated quasienergies, become highly irregular functions of the amplitude, lambda. The mathematical radii of convergence of perturbation theory in lambda approach zero. There is no adiabatic limit of the wave functions when lambda is turned on arbitrarily slowly. However, the quasienergy becomes independent of time in this limit. We introduce a modification of the adiabatic theorem. We explain why, in spite of the pervasive pathologies of the Floquet states in the limit N goes to infinity, the conventional approaches are appropriate in almost all physically interesting situations.Comment: 13 pages, Latex, plus 2 Postscript figure

    Optically induced spin to charge transduction in donor spin read-out

    Full text link
    The proposed read-out configuration D+D- for the Kane Si:P architecture[Nature 393, 133 (1998)] depends on spin-dependent electron tunneling between donors, induced adiabatically by surface gates. However, previous work has shown that since the doubly occupied donor state is so shallow the dwell-time of the read-out state is less than the required time for measurement using a single electron transistor (SET). We propose and analyse single-spin read-out using optically induced spin to charge transduction, and show that the top gate biases, required for qubit selection, are significantly less than those demanded by the Kane scheme, thereby increasing the D+D- lifetime. Implications for singlet-triplet discrimination for electron spin qubits are also discussed.Comment: 8 pages, 10 figures; added reference, corrected typ
    corecore