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Abstract

We examine the density-functional theory of macroscopic insulators, obtained

in the large-cluster limit or under periodic boundary conditions. For polar

crystals, we find that the two procedures are not equivalent. In a large-

cluster case, the exact exchange-correlation potential acquires a homogeneous

“electric field” which is absent from the usual local approximations, and the

Kohn-Sham electronic system becomes metallic. With periodic boundary

conditions, such a field is forbidden, and the polarization deduced from Kohn-

Sham wavefunctions is incorrect even if the exact functional is used.
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Although the density-functional theory (DFT) introduced by Hohenberg, Kohn and

Sham [1,2] has become the standard method for first-principles calculations of the ground-

state properties of solids, to our knowledge [3], the implications of applying DFT to infinite,

insulating, crystals have not been fully appreciated. In part, this reflects the fact that the

key theorems of DFT [1,2] were proved for arbitrarily large, but not infinite, systems. In the

present paper, we show that the exact DFT treatment of polar crystals (a) with the usual

Born-von Karman (BvK) boundary conditions, or (b) from the macroscopic limit of large

clusters, will generally give different macroscopic polarizations. Only (b) is correct.

Investigating the response of periodic insulators to a homogeneous electric field, we re-

cently revealed [4] the polarization-dependence of the exchange-correlation energy, and its

consequences on the dielectric response. Aulbur, Jönsson and Wilkins [5] quantified this ef-

fect for real materials, while Resta [6] discussed the origin of such a behaviour in connection

with long-range correlation effects. The present study emphasizes a more basic role of the

polarization in DFT: careful handling of the polarization is mandatory for polar solids, even

under zero electric field. In polar materials, the spontaneous polarization computed from the

Kohn-Sham (KS) wavefunctions will be correct only if an exchange-correlation homogeneous

electric field is allowed throughout the material, in which case the KS electronic system be-

comes metallic. This field will appear in the exact DFT treatment of a finite cluster but is

forbidden when using BvK conditions. Approximate density-functionals such as the Local

Density Approximation (LDA) and the Generalized Gradient Approximation (GGA) always

fail to yield an exchange-correlation electric field: within these approximations, using BvK

boundary conditions or finite clusters incorrectly provide the same value of the polariza-

tion [7]. Any improvement to these functionals which retains a dependence only on the

periodic density will be similarly flawed. We will exhibit our results for a one-dimensional

model semiconductor.

The correct definition of a macroscopic crystal is clearly as the limit of a finite crystal

of increasing size. Fig. 1(a) shows schematically the total electrostatic potential Velec =

Ve + VN + Vappl in such a finite crystal, where Ve is the electrostatic potential due to the
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ground-state electron density, VN is the potential due to the nuclei, and Vappl is an applied

potential, created by an external short-circuited capacitor, that maintains equality of the

electrostatic potential on the two sides [8]. The sum Vext = VN + Vappl is referred to as

the external potential. The total electrostatic potential in the bulk region is periodic and,

crucially for a non-zero polarization, non-centrosymmetric. The potential just outside the

surface is fixed by the electrostatic potential of the capacitor plates. The corresponding

ground-state electron density is also shown. In the bulk region, it is periodic, with the

same periodicity as the local potential [9]. Close to the surface, the density deviates from

perfect periodicity, although this effect decreases exponentially with the distance from the

surface [10].

The macroscopic polarization of such a finite solid is directly linked to the total surface

charge [11,12]. Its value is equal to zero (modulo a half-quantum) if the crystal is cen-

trosymmetric [12,13], but otherwise can have any value and must be calculated. For a long

time the macroscopic polarization was only accessible from the surface charge and was a

well-defined concept only for finite solids. Recent theoretical advances have shown that it

can also conveniently be determined, up to a quantum, from a Berry phase of the corre-

lated many-body wavefunction of the bulk [12–16]. Within this approach the macroscopic

polarization appears as a bulk property and is unambiguously defined even for the infinite

periodic solid, which is of practical interest in solid state ab initio calculations.

The breakthrough of King-Smith and Vanderbilt [14], leading to the modern theory of

the polarization, was actually carried out in the context of DFT. Later, they argued [12]

that the Berry phase of the occupied KS wavefunctions possesses an exact physical meaning

since the surface charge must be exactly reproduced within DFT [12]. We now show that

the justification of Vanderbilt and King-Smith apply to exact DFT only when considering

finite solids, and not when applying BvK periodic boundary conditions.

In the context of DFT, it is shown that the density n(r) of the ground state of a system

uniquely determines the external potential up to a constant. Following Kohn and Sham [2],

one can introduce a fictitious system of non-interacting electrons in an effective potential
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Veff = Vext + VH + Vxc (where Vxc is the exchange correlation potential) that reproduces

the ground-state electron density of the real system. In the particular case where periodic

boundary conditions are imposed, although the KS effective potential Veff is constrained to

reproduce the correct periodic bulk density of the polar solid, there is no guarantee that it will

reproduce the correct polarization, since this information is not contained in the criterion for

the effective potential to be correct [18]. Such a periodic DFT is based only on the periodic

part of the density, while the polarization is a completely independent quantity [13,4,6] that

depends on the phase of the correlated wavefunctions. The polarization will be correct only

in those solids where a fundamental symmetry (such as centrosymmetry) constrains the

polarization, or where external parameters, such as the pressure, are fortuitously chosen.

We illustrate this for a one-dimensional model semiconductor [19]. In this model the

electrostatic potential is periodic and asymmetric: Velec(x) = Vc cos 2πx
a

+Vs sin 4πx
a

. A non-

local self-energy operator, intended to mimic the relevant many-body effects, has the same

non-local form as in Ref. [4]: Σ(x, x′, ω) = f(x)+f(x′)
2

g(|x − x′|) where f(x) = Fo[1 − cos 2πx
a

]

is a negative function with the periodicity of one unit cell and g(y) is a normalized gaussian

of width w.

First, the Schrödinger equation containing the self-energy operator is solved by direct

diagonalization using a plane-wave basis set. The density is deduced from the sum of the

squares of the eigenfunctions. From this result, using standard iterative optimization tech-

niques, we construct an exact density-functional theory by determining the local potential

Veff(x) which, when filled with non-interacting electrons (no self-energy operator), repro-

duces the same electron density as in the self-energy calculation. Fig. 2 presents the function

Velec(x), as well as the density n(x), and the effective potential Veff(x), for the following set

of parameters : a0 = 4 a.u., Vc = Vs = 2.72 eV, Fo = −4.08 eV, w = 2 a.u.

Using the Berry-phase approach [13,14], we then compute the polarization [20]. In the

self-energy calculation, the polarization is 22.68 10−3 electrons with respect to the cen-

trosymmetric system with Vs = 0, while that calculated from the Berry phase of the Kohn-

Sham wave-functions is 21.99 10−3 electrons. The two polarizations differ by 3%, well outside
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the calculational error bar. This value may be taken as an order of magnitude estimation

of the effect in real materials, and is compatible with the observed (and often satisfactory)

accuracy of LDA polarization calculations for real ferroelectric materials [17].

The deficiency in the periodic-boundary approach, reflected in the Berry phase of the

KS wavefunctions and hence in the polarization, is that the exchange-correlation potential

is prevented from having a component which is linear in space [21]. The KS theorem demon-

strates that there is only one periodic effective potential Veff that reproduces a particular

periodic density. However, once an additional linear component is allowed, there exists an in-

finite family of KS potentials that gives the same periodic density but different polarizations

[4]. Imposing BvK conditions on the potential thus arbitrarily constrains the polarization

to a specific, usually incorrect, value. This restriction does not apply for the finite cluster,

where application of the KS theorem shows that there exists a unique effective potential

that, when used in the effective Hamiltonian, will generate the exact ground-state density

everywhere: not only in the bulk region (as in the BvK case), but also in the surface region,

resulting in the correct polarization. Fig. 1(c) sketches the behaviour of such an effective

potential. The linear part is necessary to yield the correct polarization in polar crystals.

This “exchange-correlation electric field” originates in the ultra non-local dependence of the

exchange-correlation energy in the surface charge pointed out in Ref. [4].

In the small cluster shown in Fig. 1(c), the magnitude of the exchange-correlation field

is approximately independent of the cluster size, since the polarization correction relative

to periodic DFT is constant. As the cluster is made larger, a point will be reached where

the variation in potential from one side of the cluster to the other, due to the homogeneous

exchange-correlation electric field, reaches the DFT band gap of the material. Beyond this

point, the KS electronic system is metallic and the band edges will “pin” the effective

potential (Fig. 3). As the cluster is made still larger, charge will flow freely from one face to

the other in order to maintain the correct macroscopic polarization. The magnitude of the

homogeneous electric field will now change with the size of the cluster in order to maintain

the potential drop: in the limit of large cluster size, the effective homogeneous electric field
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will be infinitesimally small, although non-zero. As mentioned in Ref. [22], an infinite system

cannot sustain a finite homogeneous electric field in its ground-state. Here, an infinitesimal

field appears naturally in the DFT treatment of polar solids.

There is a strong similarity between this behaviour and that of a system of two distant,

different, open-shell atoms [23], in which the exact exchange-correlation potential exhibits a

long-range spatial variation to align the Kohn-Sham eigenvalues. There is also a connection

with the DFT metal/insulator paradox [24] in which an insulating system may be described

as metallic in DFT.

In summary, for a polar insulator, when Born-von Karman periodic boundary conditions

are used, the polarizations calculated from the Berry phase of the Kohn-Sham wavefunctions

and from the Berry phase of the correlated wavefunction will differ, because the DFT effective

potential is prevented from acquiring a linear part. When a large cluster is used for the DFT

calculation, a homogeneous effective exchange-correlation “electric field” develops in order

to correctly reproduce the polarization. The Kohn-Sham system becomes metallic.
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FIGURE CAPTIONS

Fig.1 (a) The local electrostatic potential (external plus Hartree) of an insulator, and the

corresponding ground-state density. In the bulk region the potential is periodic. Short-

circuited capacitor plates are also present. (b) The effective potential that, when

used in Kohn-Sham equations, is able to reproduce the periodic part of the density

shown in (a), under Born-von Karman periodic boundary conditions. The macroscopic

polarization is not correct. (c) The effective potential that, when used in Kohn-Sham

equations, is able to reproduce the density shown in (a), in all the regions of space.

The macroscopic polarization is correct (in contrast to (b)).

Fig.2 The electrostatic potential Velec(x), the electron density n(x) and the Kohn-Sham ef-

fective potential Veff(x) of the model one-dimensional semiconductor are shown when

periodic boundary conditions are imposed (corresponding to Fig. 1(b)). The Kohn-

Sham electrons correctly reproduce the electron density, but not the macroscopic po-

larization.

Fig.3 For sufficiently large clusters, the exchange-correlation field will cause band overlap

and hence metallization. Further increase in cluster size leaves the band edges pinned

as shown, and charge transfer occurs between the two surfaces.
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