10,733 research outputs found

    A generic multibody simulation

    Get PDF
    Described is a dynamic simulation package which can be configured for orbital test scenarios involving multiple bodies. The rotational and translational state integration methods are selectable for each individual body and may be changed during a run if necessary. Characteristics of the bodies are determined by assigning components consisting of mass properties, forces, and moments, which are the outputs of user-defined environmental models. Generic model implementation is facilitated by a transformation processor which performs coordinate frame inversions. Transformations are defined in the initialization file as part of the simulation configuration. The simulation package includes an initialization processor, which consists of a command line preprocessor, a general purpose grammar, and a syntax scanner. These permit specifications of the bodies, their interrelationships, and their initial states in a format that is not dependent on a particular test scenario

    An extended space approach for particle Markov chain Monte Carlo methods

    Full text link
    In this paper we consider fully Bayesian inference in general state space models. Existing particle Markov chain Monte Carlo (MCMC) algorithms use an augmented model that takes into account all the variable sampled in a sequential Monte Carlo algorithm. This paper describes an approach that also uses sequential Monte Carlo to construct an approximation to the state space, but generates extra states using MCMC runs at each time point. We construct an augmented model for our extended space with the marginal distribution of the sampled states matching the posterior distribution of the state vector. We show how our method may be combined with particle independent Metropolis-Hastings or particle Gibbs steps to obtain a smoothing algorithm. All the Metropolis acceptance probabilities are identical to those obtained in existing approaches, so there is no extra cost in term of Metropolis-Hastings rejections when using our approach. The number of MCMC iterates at each time point is chosen by the used and our augmented model collapses back to the model in Olsson and Ryden (2011) when the number of MCMC iterations reduces. We show empirically that our approach works well on applied examples and can outperform existing methods.Comment: 35 pages, 2 figures, Typos corrected from Version

    Theory of the Stark Effect for P donors in Si

    Full text link
    We develop a multi-valley effective mass theory for substitutional donors in silicon in an inhomogeneous environment. Valley-orbit coupling is treated perturbatively. We apply the theory to the Stark effect in Si:P. The method becomes more accurate at high fields, and it is designed to give correct experimental binding energies at zero field. Unexpectedly, the ground state energy for the donor electron is found to increase with electric field as a consequence of spectrum narrowing of the 1s manifold. Our results are of particular importance for the Kane quantum computer.Comment: published versio
    • …
    corecore