research

An extended space approach for particle Markov chain Monte Carlo methods

Abstract

In this paper we consider fully Bayesian inference in general state space models. Existing particle Markov chain Monte Carlo (MCMC) algorithms use an augmented model that takes into account all the variable sampled in a sequential Monte Carlo algorithm. This paper describes an approach that also uses sequential Monte Carlo to construct an approximation to the state space, but generates extra states using MCMC runs at each time point. We construct an augmented model for our extended space with the marginal distribution of the sampled states matching the posterior distribution of the state vector. We show how our method may be combined with particle independent Metropolis-Hastings or particle Gibbs steps to obtain a smoothing algorithm. All the Metropolis acceptance probabilities are identical to those obtained in existing approaches, so there is no extra cost in term of Metropolis-Hastings rejections when using our approach. The number of MCMC iterates at each time point is chosen by the used and our augmented model collapses back to the model in Olsson and Ryden (2011) when the number of MCMC iterations reduces. We show empirically that our approach works well on applied examples and can outperform existing methods.Comment: 35 pages, 2 figures, Typos corrected from Version

    Similar works

    Full text

    thumbnail-image

    Available Versions