
A GENERIC MULTIBODY SIMULATION

by

K. A. Hopping, Principal Engineer
W. Kohn, Advanced Systems Engineering Specialist

Lockheed Engineering and Management Services Company, Inc.
Houston, Texas

ABSTRACT

This paper describes a dynamic simulation package which can be configured for

orbital test scenarios involving multiple bodies. The rotational and translational

state integration methods are selectable for each individual body and may be
changed during a run if necessary. Characteristics of the bodies are determined by

assigning components consisting of mass properties, forces, and moments, which

are the outputs of user-defined environment models. Generic model

implementation is facilitated by a transformation processor which performs

coordinate frame conversions. Transformations are defined in the initialization file

as part of the simulation configuration. The simulation package includes an

initialization processor, which consists of a command line preprocessor, a general

purpose grammar, and a syntax scanner. These permit specification of the bodies,

their interrelationships, and their initial states in a format that is not dependent

upon a particular test scenario.

Keywords: generic simulation, multiple bodies, state propagation, initialization

processor, data structure, data pointer, coordinate transformation

o

/>rn;• o

LEMSCO-23365

9" and
Services Co.) 27 p CSCI 09B

Unclas
G3/61 O U 6 6 7 (

https://ntrs.nasa.gov/search.jsp?R=19880014814 2020-03-20T06:54:13+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42832261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. INTRODUCTION

In general, simulations are designed and built to fixed specifications. With the
advancement of the space program, there will be multiple and varied requirements
for simulation. Each simulation will have a specific purpose, such as traffic control
around the Space Station, control system analysis of auxiliary vehicles, systems
evaluation for the Space Station, and construction and manufacturing in space.
Each of these applications will have a unique set of requirements to be met by
simulation, but common to all will be a requirement to simulate the physical
phenomena of multiple bodies in Earth orbit and all their interactions.

This paper describes a generic multibody simulation that allows the user to
construct a test scenario consisting of the specifications for a number of bodies and
their interrelationships. The simulation is designed to handle different test
scenarios without major software revisions. An initialization processor builds the
required simulation data structures based on the user's initialization file. Changes
to the test scenario, such as the addition of another body, affect the initialization
file rather than the simulation code itself.

The primary task of the simulation is to propagate the translational and rotational
states for each body. A key observation is that for orbital motion all bodies obey the
same physical laws (Newton-Euler). Therefore, up to parameters, the software
required for the characterization of the dynamic behavior of all bodies is the same
and is based on recursive integration of the corresponding equations of motion.

The central data structure of the simulation is the free body, which is composed of
the following elements.

1. State

2. Mass properties

3. Forces and moments

These elements are themselves composite data structures. For example, the state
includes translation (position and velocity) variables, rotation (angular position and
velocity) variables, and the integration method (rectangular, trapezoidal, etc.) used



for updating the variables. A detailed description of free body state propagation is
given in section 4.

While the characteristics of each body are reflected in the free body data structure,
the interrelationships between bodies are represented by constructing links
between the different free body data structures. These links control the flow of
computation in the simulation and are important for maintaining logically
consistent state data. A discussion of the free body hierarchy is given in section 3.

From a purely computational point of view, all bodies are identical. However, some
means must be provided to incorporate their different physical characteristics into
the calculations. Section 5 describes the approach used to associate different mass
properties, forces, and moments with each free body.

One of the most difficult problems in the construction of a generic simulation is the
need to deal with scenario-dependent coordinate transformations. Simulation
math models are often concerned with relationships between bodies. Since the
initialization file contains the information specifying which bodies are in a given
test scenario, the definition of interbody coordinate transformations must also be
given there. Section 6 contains a discussion of generic coordinate transformations
and how they fit into the flow of computation.

The advantages of a generic simulation are lost if the initialization calculations have
to be hard coded for each scenario. One approach to circumventing this input
bottleneck is the use of a general purpose syntax scanner and a flexible grammar for
describing the initial state data. A discussion of these features is given in section 7,
and an example is presented in section 8.

The simulation is coded in the C programming language. The choice of C language
was made because of the capability for defining compound data structures and the
ease of generating and manipulating data pointers. In most cases, the generic
capability of the simulation is achieved by converting the specifications in the test
scenario into some type of linked data structure. Simulation calculations can then
be executed as recursive function calls independent of the particular test scenario.



In many respects, the generic simulation bears a closer resemblance to an operating
system than it does to the traditional simulation architecture.



2. SIMULATION DESIGN

A block diagram showing the general structure of the simulation is given in figure 1
The simulation is composed of five functional units: initialization; free body state
propagation; environment, sensor, and controller models; output interface; and
input interface.

The initialization unit reads the user's initialization file and configures the free
bodies and math models according to the test scenario. A simulation update cycle
begins by executing the environment models followed by integration of the free
body equations of motion. The sensor models are then executed using the new
state data. The controller models process the sensor data to generate inputs to the
environment models. Finally, the output and input buffers are processed to
complete the cycle.

The primary design goal was to provide a simulation architecture that could be
adapted to the needs of several different projects. The first step in accomplishing
this was to separate free body state propagation, which embodies invariant laws of
physics, from the application-specific math models. Free bodies are treated as data
objects which interact with the environment models by means of well-defined
function calls. All free bodies have the same basic properties, and they may be
reproduced in as many copies as required by the test scenario.

An object-oriented approach was also applied to the math models. Each model
interacts with the overall simulation by means of the following operations.

1. Reset - Clear the internal state to the default value

2. Initialize - Read the initialization file to set the internal state

3. Update - Process the model inputs to the update state and generate new model
outputs

4. Print - Output the model state to the print file

5. Input-Get the model inputs from the input buffer
o

6. Output - Put the model outputs into the output buffer



INITIALIZATION

FREE BODIES
ENVIRONMENT,
SENSORS. AND
CONTROLLERS

OUTPUT INTERFACE INPUT INTERFACE

Figure 1.-Simulation block diagram.



The simulation executive executes these model functions during the operational
cycle without regard to the internal workings of a particular model. Additional
functions may be provided for interaction between models. However, these
operations are not visible at the executive level.

The math models can only distinguish among themselves and the various free
bodies by means of names assigned in the initialization file. Thus, model
implementations are forced to be generic with respect to input sources and output
destinations. The model interfaces are maintained via data pointers that are part of
the internal model state. The general data flow during simulation execution does
not require dedicated action on the part of the executive program. It is the
connections between models specified in the initialization file that determines
what processing will take place. The role of the simulation executive is simply to
execute the different model classes (environment, sensors, and controllers) in
proper relation to free body state propagation and to process the transmission and
receipt of output and input buffers.

The initialization file is far more than a simple table of values for specifying model
parameters. It directs construct!on of the entire simulation configuration by linking
together a library of math models. The function calls which accomplish this might
also be used during execution to dynamically reconfigure the simulation.



3. FREE BODY HIERARCHY

In a multibody simulation, one of the central problems is to determine the proper
sequence for updating the state of each body so that uniformity in time of the
relative interbody dynamics is achieved. Since the update sequence is scenario-
dependent, it is important to provide a general method for describing the interbody
relationships to the simulation.

The example in figure 2 shows a mission scenario involving a Space Shuttle, a
manned maneuvering unit, the Space Station, and a satellite in low Earth orbit. The
hierarchical relationships are represented by links between bodies in the graph.
One method for representing such relationships in a computer data structure is the
binary tree. Figure 3 illustrates how the mission scenario is represented as a binary

tree.

The binary tree is easily constructed. As each body in the scenario is defined and its
parent body specified, it can be linked at the proper level in the tree. Bodies which
have no parent are simply linked to the root level of the tree. The resulting data
structure contains all the information pertaining to parent-child relationships.
Because the structure is open-ended, there are no constraints on the number of
bodies in the test scenario or on how deeply nested their interrelationships may be.

The procedure for updating the free body states now becomes a matter of
traversing the binary tree. This is handled by recursively processing down from the
root level until a body with no children is reached. After that body is updated, the
same procedure is applied iteratively to each of its siblings until none remain on the
current level. The recursion then backs up to process the previous level, proceeding
in this manner until the root level is completed and all bodies have been updated.

Note that the procedure described is independent of any particular test scenario.
The only input data required is the root link of the free body hierarchy. The test
scenario is implicit in the structure of the binary tree. Also, there is no constraint
that the hierarchy be static. Bodies can be introduced or deleted from the simula-
tion at any time by simply linking them to or unlinking them from the binary tree.

8



MANNED
MANEUVERING

UNIT

Figure 2.- Test scenario.



MANNED
MANEUVERING

UNIT

Figure 3.- Binary tree representation.

10



Thus, this approach is well-suited for dynamic test scenarios, where new bodies may
be created by vehicles docking or undocking from each other.

11



4. STATE PROPAGATION

Each free body has an associated state vector that consists of a translational state

and a rotational state. The translational state is initialized from a known position

and velocity. The rotational state is initialized from a set of Euler angles and

angular rates. Any of the six canonical Euler sequences may be used. All functions

that accept Euler angles as arguments are required to test for the particular

sequence and process accordingly.

The translational state is defined in a user-specified, rectangular inertial reference

frame. According to Newton's law, the total external force divided by the body

mass yields the nongravitational acceleration. The gravitational acceleration is

calculated from the current position by means of a gravitational potential model.

The total acceleration is then integrated to obtain an updated velocity and position.

The integration method is selectable at initialization time. Three methods have

been implemented: rectangular, trapezoidal, and Cowell's methods.

The rotational state is defined in a rectangular coordinate frame located at the

body's center of gravity. The Euler angles are defined with respect to a user-

specified, nonrotating reference frame. The total external moment and the inertia

dyad are used to calculate the angular acceleration. This acceleration is integrated

to obtain the angular rate. The angular rate is used to integrate the rotational

quaternion, from which the updated Euler angles are extracted. The integration

method for the rotational state is selectable independently from the translational

method, and the same methods are available for it.

The equations of motion default to particle dynamics for the case of a body with

zero-mass properties. The linear acceleration is set to zero, and only gravity acts to

determine the translational state propagation. The angular velocity is fixed at a

constant value for rotational state propagation. It is also possible to totally bypass

either translational or rotational state propagation by specifying a null reference

frame for the associated state. In fact, this is the default condition if no value is

given in the initialization file.

12



Multistep integration methods require that previous values of the state vector be
retained. To accommodate this, the state vector data structure includes several
copies of the translational and rotational data structures. A circular queue of
pointers to these multiple states is maintained by the integration algorithm. As
each integration step is completed, the queue is rotated forward by one position so
that the most recently computed state becomes the current state. The previous
states shift back, with the oldest state being overwritten during the next update
cycle. This technique avoids the large number of load/store operations usually
associated with retaining of old state data. It is also independent of the
implementation details of the translational and rotational states.

A complete set of previous states is maintained regardless of which integration
method is currently selected. This makes it possible to switch integration methods
while a run is in progress. For example, a rendezvous test scenario might use a low
order integration method during early approach phases and then switch to a more
accurate high order method for close-in docking maneuvers.

Initialization is more difficult for multistep integration methods because of the
need to generate previous state values. The approach taken to overcome this
problem is to use a first order method to integrate backwards with a negative time
step. This provides satisfactory results if no large transient disturbances are present
in the initial state.

13



5. FREE BODY COMPONENTS

In addition to a state vector, each free body has three other components: mass

properties, forces, and moments. These are data structures that define the interface

whereby environment models can influence the propagation of the state vector.

The environment models associated with a free body will depend on the simulation

configuration specified in the initialization file. Some mechanism must be provided

to accommodate these configuration dependencies while still maintaining a generic

approach to state propagation.

A means for achieving this goal is illustrated by the diagram in figure 4. The free

body components are maintained as linked chains. The root component of each

chain is reserved as a summation element for the total mass properties, total force,

and total moment that are required for state propagation. The summation

procedure, which is quite simple, must be carried out prior to the integration of the

state equations. After the summation element is zeroed, each element in the chain

is added to the sum until a null link indicates the end of the chain. In the case where

the first link is null, the summation element is treated as a constant. This is useful

for bodies which have a single invariant component.

Since state propagation only interfaces with the summation element, it is effectively

isolated from the simulation configuration which is represented in the component

chains. Each environment model has the responsibility for linking its output data to

the appropriate free body component chain during the initialization processing.

Thus, the interface between environment models and free bodies is controlled by

the functions which build the linked chains. There is no requirement for the chains

to remain static; thus, components can be introduced or deleted dynamically by

simply modifying the component chains.

Each of the free body components is implemented as a simulation resource.

Functions are provided for allocating, linking, unlinking, and deallocating

components. These routines are designed to carefully validate the component data

types so that extraneous data cannot be introduced into the component chains. The

resource management functions are generic with respect to the different

component types. Only the operations for zeroing and addition of two components

14



STATE
VECTOR

LINK

MASS
PROPERTIES

LINK

FORCE

LINK

MOMENT

Figure 4.- Free body structure.

15



are specific to the implementation details of the component data structure. This
provides a well-defined template for adding any new free body components that

might be required.

16



6. COORDINATE TRANSFORMATIONS

Each free body component has an associated coordinate frame. During the

summation operation, a check is made for compatibility with the frame specified in

the summation element. If the frames differ, then the component data must be

transformed before the summation operation can take place. By placing the

conversion process in the summation routine, the environment models can operate

independently from the body to which their output is attached. It is always the end

user's responsibility to make the necessary coordinate transformations. This

protects math models from the effects of configuration changes that might occur

when different test scenarios are selected.

To implement this approach, a transformation processor must be programmed with

the necessary conversion procedures. This requires that all coordinate frames be

declared during the initialization process. The relationships between frames are

then defined in terms of translation vectors and rotation matrices. Five classes of

transformations must be considered.

The first of these classes is constant transformations. These are defined during

initialization and are invariant during the course of a simulation run.

The second class of transformations consists of those derived from the free body

rotational state. They are implicitly defined by the rotational quaternion. During

state vector propagation, a rotation matrix is extracted from the quaternion and

sent to the transformation processor. This transformation can be viewed as an

extension of the free body state.

The third class is related to the free body mass properties. The mass properties data

structure includes the location of the center of gravity referenced to some user-

defined structural frame. The summation operation thus yields the translation

vector from the body's structural frame to the total body center of gravity, which by

definition is the origin of the rotational reference frame. This vector is

automatically forwarded to the transformation processor during the rotational

state update.

17



The fourth class of transformations includes all those updated during execution of
the math models. Their definition is model-specific and not directly related to the
propagation of the free body state. The transformation processor only needs to
know which two frames are related by the transformation.

The fifth class consists of all transformations defined as combinations of two
previously defined transformations. A derived transformation can be defined by
specifying its two component transformations and the two frames which it relates.
By examining the coordinate frames of the component transformations, the
transformation processor can determine the sequence of matrix and vector products
that yields the desired compound transformation. This construction method is then
stored as part of the transformation definition.

When a coordinate transformation is required during simulation execution, the
"from" and "to" frames are sent to the transformation processor, which locates the
required rotation matrix and/or translation vector. The lookup procedure must be
fairly efficient to avoid degrading simulation performance. For each "from" frame,
the transformation processor maintains a linked list of "to" frames. In most cases,
there are only a few entries in the list, so search time will not be severe.

Each transformation is tagged with the time of its last update. If the current value is
obsolete, then it must be recalculated from the component transformations. This
procedure is applied recursively to the component transformations. Eventually, all
the components are reduced to one of the first four transformation classes. All of
these should be current if the free body hierarchy is properly constructed and math
model execution is properly sequenced. In this way, the transformation processor is
able to ensure that calculations are not skewed by usage of obsolete data.

The gravitational potential model provides a good illustration of how the
transformation processor is used. This model is designed to calculate the
gravitational acceleration vector in the geographic reference frame. The input is a
translational state vector which is calculated in a user-defined inertial reference
frame. The gravity model simply calls the transformation processor to perform the
coordinate conversion. After completing its calculation, it calls again for the inverse
transformation on the model output. Since such inverse transformations occur

18



frequently, the transformation processor is designed to generate them
automatically when needed.

Centralization of coordinate transformations is an important ingredient for
maintaining a generic simulation. It allows math model implementations to be
parameterized in terms of coordinate frames. However, there may be some loss in
computational efficiency because generic processing cannot take advantage of
simplifications such as a diagonal rotation matrix. On the other hand, implicit
coding of shortcuts into math models is often a source of error when the math
models are later adapted to other purposes.

19



7. SIMULATION INITIALIZATION

In most simulations, initialization is accomplished by taking a fixed set of input
parameters and calculating a fixed set of internal variables. When new models are
added to the simulation, the input processor has to be revised to meet the new
requirements. In a simulation where many different initial configurations are
possible, this approach leads to a proliferation of special control flags and sections

of infrequently used code.

A generic simulation by its very nature requires a more flexible approach to
initialization. Instead of being coded for all possible initial configurations, the
initialization processor has been designed as a flexible grammar that maps user
inputs into the simulation data structures. The syntax allows the expression of
algebraic relationships between input parameters directly in the initialization file.
The initialization processor is fully described in the Rendezvous Expert System
Summary Report^. A general outline of the initialization processor's major features
will be given here.

The initialization processor is implemented with four levels of command processing.

1. Command line preprocessor

2. Executive level command processor

3. Application level command processor

4. General purpose syntax scanner

The first level closely resembles the C language preprocessor. It provides a set of
control structures for conditional processing and symbolic substitution. Its purpose
is to allow parameterization of the initialization file. Command processing at this

level is independent of the simulation structure.

The second level is concerned with initialization of the primary simulation data
structures. It is organized as a hierarchical grammar where keywords are used to
invoke processing routines (production rules). Keywords are provided for defining

20



the free body hierarchy and initializing the free body components. Coordinate
frames and transformations are also defined at this level.

Any keyword that is not recognized by the executive level is passed down to the
application level. A simple table lookup is used to determine the corresponding
math model initialization entry point. As new models are added to the simulation,
it is a simple matter to append new entries to the table.

Processing at the application level depends on the initialization requirements of
individual math models. The syntax scanner provides a set of common facilities
which are used to decode tokens from the command line. The basic tokens are
keywords, strings, numeric expressions, and Boolean expressions. By combining
appropriate calls to the syntax scanner, the production rules specific to a particular
math model can be implemented.

An initialization grammar is well-suited for processing key model parameters.
However, it tends to be cumbersome for models that have a large number of
internal variables. Supplying default initialization values directly in the model is
one way to reduce the amount of data in the initialization file. A mechanism for
overriding the defaults is occasionally needed. This is accomplished by providing
access to symbolic parameters defined by the command preprocessor. The model
simply asks for a parameter by name, and if it has been defined, that value overrides
the default.

A disadvantage of this approach is that parameter names for a given model must be
unique. In contrast, identical keywords can be used for several different models
because their meaning is context-dependent. The design of a math model
initialization function involves careful consideration of which parameters are
common to other models and which are model-specific. Normally, parameters that
define the interfaces to other math models will be initialized with keywords.
Parameters that define the internal model configuration use preprocessor variables.

21



8. EXAMPLE

The following example shows how the simulation is configured for a simple
rendezvous test scenario with a Space Shuttle approaching the Space Station. The
rendezvous radar sensor is providing guidance inputs. Guidance issues commands to
the digital auto pilot, which fires the reaction control jets to maintain the desired
trajectory.

Lines beginning with "#" are preprocessor commands. Text following semicolons
are comments. Character strings are enclosed in quotes. Numeric arguments may be
simple values or algebraic expressions.

ftdefine Title "Rendezvous Example"

ftdefine PI 3.14159265358979
fdefine DEG_to_RAD PI/180.

ftdefine TimeIC 16939373.400 ; seconds since Jan. 0
ftdefine deltaT 0.040 ; integration time step (sec)

; DEFINE REFERENCE FRAMES

; Note : "inertial" and "geographic" are predefined frames
Frame "mean 1950" ; Aries mean of 1950
Frame "orbiter body" ; vehicle rotational frame
Frame "orbiter vehicle" ; vehicle structural frame
Frame "rendezvous radar" ; radar sensor frame

; DEFINE COORDINATE TRANSFORMATIONS

; constant transformation
ftdefine Tepoch 16934400.000 ; midnight GMT 7/15/85
Transform "[I:M50]" To "inertial" From "mean 1950"
Construct "constant" Matrix \
0.683481810691 , -.729963786754 , -.00233360053191 , \
0.729959452662 , 0.683485794199 , -.00251551851639 , \
0.003431220390 , 0.000015877300 , 0.999994113200

; radar location in vehicle structural frame
ftdefine psiR 67.0*DEG_to_RAD
Transform "[R:OV]" To "rendezvous radar" From "orbiter vehicle"
Construct "constant" \

Matrix -cos(psiR) , sin(psiR) , 0.0 , \
sin(psiR) , cos(psiR) , 0.0 , \

0.0 , 0.0 , -1.0 , \
Vector 565.841/12 , -134.365/12 , 443.875/12

22



; primary transformations - updated from rotational quaternion
Transform "[G:I]" To "geographic" From "inertial"
Transform a[B:I]" To "orbiter body" From "inertial"

; structural to body transformation
Transform "[B:OV]H To "orbiter body" From "orbiter vehicle"
Construct "static" \

Matrix -1.0 , 0.0 , 0.0 , \
0.0 , 1.0 , 0.0 , \
0.0 , 0.0 , -1.0 , \

Vector 0.0, 0.0, 0.0 ; updated from vehicle CG

; composite transformation
Transform "[R:B]" To "rendezvous radar" From "orbiter body"
Construct Using "[R:OV]" "[B:OV]"

; INITIALIZE EARTH - rotational dynamics only

fdefine omegaE 7.29211514647e-5 ; earth rate (radians/sec)
Body "Earth" ; default parent is Root
State "Earth's Rotation"
; rotational state frame and integration method
Rstate "geographic" Integ "rectangular"
AngVel 0.0, 0.0, omegaE
Euler "Yaw-Pitch-Roll" omegaE*(TimeIC - Tepoch), 0.0, 0.0
; quaternion reference frame and integration method
Quat "inertial" Integ "rectangular"

; INITIALIZE SHUTTLE - translational and rotational dynamics

Body "Shuttle" Parent "Earth"
State "Vehicle" Frame "mean 1950" ; initialization frame
Pos 11915001.5369 , 8086863.11685 ,-16878413.7981 ; ft
Vel -12956.2421875 , 21558.2304687 , 1171.98974609 ; ft/sec
; translational state frame and integration method
Tstate "inertial" Integ "trapezoidal"
; rotational state frame and integration method
Rstate "orbiter body" Integ "Cowell"
AngVel 0.0, 0.0, 0.0
Euler "Pitch-Yaw-Roll" 1.43620392, 0.69847930, 0.27676572 ; rad
; quaternion reference frame and integration method
Quat "inertial" Integ "Cowell"

; constant mass properties
Mprop "Shuttle Body" Frame "orbiter body"
Mass 7000. , CG 92.48 , 0. , 31.6 , "orbiter vehicle"
Inertia 1005670. , 7419840. , 7760100. , \

-3545. , 1030. , -260180.
; summation elements for forces and moments
Fvect "total body force" Frame "orbiter body"
Mvect "total body moment" Frame "orbiter body"

23



; INITIALIZE SPACE STATION - translations! dynamics only

Body "Space Station" Parent "Earth"
State "Target" Frame "mean 1950" ; initialization frame
Pos 11912409.98 , 8091174.56 ,-16878178.96 ; ft
Vel -12959.3049 , 21556.1509 , 1176.3413 ; ft/sec
; translational state frame and integration method
Tstate "inertial" Integ "trapezoidal"

; INITIALIZE ENVIRONMENT SENSOR AND CONTROLLER MODELS

OrbRCS "Shuttle RCS" Vehicle "Shuttle"

Radar "Shuttle Radar" Vehicle "Shuttle" Target "Space Station"
Radar Frame "rendezvous radar"

ftdefine LOW 0 ; table selection index
ftdefine DAP_gain LOW ; low gain
idefine DAP_limit LOW ; low rate limit
{(define DAP_dband LOW ; low deadband
OrbDAP "Shuttle DAP" Vehicle "Shuttle" OrbRCS "Shuttle RCS"

OrbGuid "Shuttle Guidance" Vehicle "Shuttle" Target "Space Station"
OrbGuid OrbDAP "Shuttle DAP" Radar "Shuttle Radar"

24



9. CONCLUSIONS AND FUTURE DEVELOPMENT

The generic simulation has run successfully on several different computer systems.
These include the VAX 11/780, SEL 32-87, IBM PC-AT, and LMI Lambda 2x2 +. This
portability has been essential in applying the work to different projects. It has also
provided useful benchmarks in the evaluation of possible new computer acquisitions
(VAX 8600 and Micro VAX). The execution time for state propagation using
trapezoidal integration is 17 milliseconds per body on the VAX 11/780.

The simulation program consists of 18,000 lines of C source code. Use of the
C preprocessor has been a key factor in maintaining multiple configurations in a
single set of source files. System dependencies, such as file pathname syntax, are
handled by conditional inclusion of code segments based on preprocessor control
flags. Only the header file defining the control flags has to be maintained separately
on the different systems.

The ability to isolate simulation elements by simple modifications to the initialization
file has proved helpful in troubleshooting math model problems. This capability also
eliminates the need to maintain special driver programs for unit testing. The
initialization syntax scanner has been adequate for relatively simple state
initializations. An extension to handle matrix and vector operators in addition to the
scalar arithmetic operators would greatly improve its utility.

Use of the transformation processor has resulted in much cleaner math model
implementations. With messy coordinate conversions removed, the underlying
algorithms are more clearly defined and easier to maintain. However, the definition
of the required transformations in the initialization file is the price that has to be
paid for this simplification. The situation could be improved by adding a construction
algorithm to the transformation processor. By examining the lists of primitive
transformations, it would be possible to automatically define any compound
transformation that might be needed.

The coordinate conversions do not include scaling transformations. Such a capability
would be possible if a measurement units attribute were added to the simulation
data structures. This would enable more comprehensive compatibility checking.

25



However, the requirement for additional initialization data and the reduction in
processing speed outweighed the potential benefits.

The object-oriented approach to math model design enables more rapid software
development. Since all models must provide the same set of interface functions, it is
often possible to take an existing model and modify it slightly to meet different
requirements. Most of the differences between models tend to be concentrated in
the state update function. A programming language which directly supports
inherited characteristics would be superior to C language in this respect.

The simulation is implemented as a single computation task and a separate
input/output interface task. The interface task can be customized for particular
project or system requirements without disturbing the main simulation. For
applications requiring real-time execution speeds, it might be desirable to divide the
computation task for parallel processing. However, the transformation processor
makes this difficult since it has to be easily accessible from all the math models.

26



ACKNOWLEDGMENTS

This work was carried out at the Systems Engineering Simulation Laboratory at the

National Aeronautics and Space Administration (NASA) Lyndon B. Johnson Space

Center (JSC) under contract NAS 9-15800, job order 24-123.

REFERENCES

1DUNN.C.

Rendezvous Expert System Summary Report. LEMSCO-23427 (November 1986).

27




