263 research outputs found
Internal Transitions of Two-Dimensional Charged Magneto-Excitons X-: Theory and Experiment
Internal spin-singlet and spin-triplet transitions of charged excitons X- in
magnetic fields in quantum wells have been studied experimentally and
theoretically. The allowed X- transitions are photoionizing and exhibit a
characteristic double-peak structure, which reflects the rich structure of the
magnetoexciton continua in higher Landau levels (LL's). We discuss a novel
exact selection rule, a hidden manifestation of translational invariance, that
governs transitions of charged mobile complexes in a magnetic field.Comment: 4 pages, 2 figures, submitted to Physica
Charged hydrogenic problem in a magnetic field: Non-commutative translations, unitary transformations, and coherent states
An operator formalism is developed for a description of charged electron-hole
complexes in magnetic fields. A novel unitary transformation of the Hamiltonian
that allows one to partially separate the center-of-mass and internal motions
is proposed. We study the operator algebra that leads to the appearance of new
effective particles, electrons and holes with modified interparticle
interactions, and their coherent states in magnetic fields. The developed
formalism is used for studying a two-dimensional negatively charged
magnetoexciton . It is shown that Fano-resonances are present in the
spectra of internal transitions, indicating the existence of
three-particle quasi-bound states embedded in the continuum of higher Landau
levels.Comment: 9 pages + 2 figures, accepted in PRB, a couple of typos correcte
Striped periodic minimizers of a two-dimensional model for martensitic phase transitions
In this paper we consider a simplified two-dimensional scalar model for the
formation of mesoscopic domain patterns in martensitic shape-memory alloys at
the interface between a region occupied by the parent (austenite) phase and a
region occupied by the product (martensite) phase, which can occur in two
variants (twins). The model, first proposed by Kohn and Mueller, is defined by
the following functional: where
is periodic in and almost everywhere.
Conti proved that if then the minimal specific
energy scales like ,
as . In the regime , we improve Conti's results, by computing exactly the
minimal energy and by proving that minimizers are periodic one-dimensional
sawtooth functions.Comment: 29 pages, 3 figure
The diversification and lineage-specific expansion of nitric oxide signaling in Placozoa: insights in the evolution of gaseous transmission.
Nitric oxide (NO) is a ubiquitous gaseous messenger, but we know little about its early evolution. Here, we analyzed NO synthases (NOS) in four different species of placozoans-one of the early-branching animal lineages. In contrast to other invertebrates studied, Trichoplax and Hoilungia have three distinct NOS genes, including PDZ domain-containing NOS. Using ultra-sensitive capillary electrophoresis assays, we quantified nitrites (products of NO oxidation) and L-citrulline (co-product of NO synthesis from L-arginine), which were affected by NOS inhibitors confirming the presence of functional enzymes in Trichoplax. Using fluorescent single-molecule in situ hybridization, we showed that distinct NOSs are expressed in different subpopulations of cells, with a noticeable distribution close to the edge regions of Trichoplax. These data suggest both the compartmentalized release of NO and a greater diversity of cell types in placozoans than anticipated. NO receptor machinery includes both canonical and novel NIT-domain containing soluble guanylate cyclases as putative NO/nitrite/nitrate sensors. Thus, although Trichoplax and Hoilungia exemplify the morphologically simplest free-living animals, the complexity of NO-cGMP-mediated signaling in Placozoa is greater to those in vertebrates. This situation illuminates multiple lineage-specific diversifications of NOSs and NO/nitrite/nitrate sensors from the common ancestor of Metazoa and the preservation of conservative NOS architecture from prokaryotic ancestors
Kohn-Luttinger instability of the t-t' Hubbard model in two dimensions: variational approach
An effective Hamiltonian for the Kohn-Luttinger superconductor is constructed
and solved in the BCS approximation. The method is applied to the t-t' Hubbard
model in two dimensions with the following results: (i) The superconducting
phase diagram at half filling is shown to provide a weak-coupling analog of the
recently proposed spin liquid state in the J_1-J_2 Heisenberg model. (ii) In
the parameter region relevant for the cuprates we have found a nontrivial
energy dependence of the gap function in the dominant d-wave pairing sector.
The hot spot effect in the angular dependence of the superconducting gap is
shown to be quite weak
Activation Energy in a Quantum Hall Ferromagnet and Non-Hartree-Fock Skyrmions
The energy of Skyrmions is calculated with the help of a technique based on
the excitonic representation: the basic set of one-exciton states is used for
the perturbation-theory formalism instead of the basic set of one-particle
states. We use the approach, at which a skyrmion-type excitation (at zero Lande
factor) is considered as a smooth non-uniform rotation in the 3D spin space.
The result within the framework of an excitonically diagonalized part of the
Coulomb Hamiltonian can be obtained by any ratio [where is the typical Coulomb
energy ( being the magnetic length); is the cyclotron
frequency], and the Landau-level mixing is thereby taken into account. In
parallel with this, the result is also found exactly, to second order in terms
of the (if supposing to be small) with use of the
total Hamiltonian. When extrapolated to the region , our
calculations show that the skyrmion gap becomes substantially reduced in
comparison with the Hartree-Fock calculations. This fact brings the theory
essentially closer to the available experimental data.Comment: 14 pages, 1 figure. to appear in Phys. Rev. B, Vol. 65 (Numbers ~
19-22), 200
First- principle calculations of magnetic interactions in correlated systems
We present a novel approach to calculate the effective exchange interaction
parameters based on the realistic electronic structure of correlated magnetic
crystals in local approach with the frequency dependent self energy. The analog
of ``local force theorem'' in the density functional theory is proven for
highly correlated systems. The expressions for effective exchange parameters,
Dzialoshinskii- Moriya interaction, and magnetic anisotropy are derived. The
first-principle calculations of magnetic excitation spectrum for ferromagnetic
iron, with the local correlation effects from the numerically exact QMC-scheme
is presented.Comment: 17 pages, 3 Postscript figure
Meson Screening Mass in a Strongly Coupled Pion Superfluid
We calculate the meson screening mass in a pion superfluid in the framework
of Nambu--Jona-Lasinio model. The minimum of the attractive quark potential is
always located at the phase boundary of pion superfluid. Different from the
temperature and baryon density effect, the potential at finite isospin density
can not be efficiently suppressed and the matter is always in a strongly
coupled phase due to the Goldstone mode in the pion superfluid.Comment: 8 pages, 7 figures(Accepted by European Physical Journal C
Scaling Of Chiral Lagrangians And Landau Fermi Liquid Theory For Dense Hadronic Matter
We discuss the Fermi-liquid properties of hadronic matter derived from a
chiral Lagrangian field theory in which Brown-Rho (BR) scaling is incorporated.
We identify the BR scaling as a contribution to Landau's Fermi liquid
fixed-point quasiparticle parameter from "heavy" isoscalar meson degrees of
freedom that are integrated out from a low-energy effective Lagrangian. We show
that for the vector (convection) current, the result obtained in the chiral
Lagrangian approach agrees precisely with that obtained in the
semi-phenomenological Landau-Migdal approach. This precise agreement allows one
to determine the Landau parameter that enters in the effective nucleon mass in
terms of the constant that characterizes BR scaling. When applied to the weak
axial current, however, these two approaches differ in a subtle way. While the
difference is small numerically, the chiral Lagrangian approach implements
current algebra and low-energy theorems associated with the axial response that
the Landau method misses and hence is expected to be more predictive.Comment: 39 pages, latex with 4 eps figure, modified addresses and reference
Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions
Previous and present "academic" research aiming at atomic scale understanding
is mainly concerned with the study of individual molecular processes possibly
underlying materials science applications. Appealing properties of an
individual process are then frequently discussed in terms of their direct
importance for the envisioned material function, or reciprocally, the function
of materials is somehow believed to be understandable by essentially one
prominent elementary process only. What is often overlooked in this approach is
that in macroscopic systems of technological relevance typically a large number
of distinct atomic scale processes take place. Which of them are decisive for
observable system properties and functions is then not only determined by the
detailed individual properties of each process alone, but in many, if not most
cases also the interplay of all processes, i.e. how they act together, plays a
crucial role. For a "predictive materials science modeling with microscopic
understanding", a description that treats the statistical interplay of a large
number of microscopically well-described elementary processes must therefore be
applied. Modern electronic structure theory methods such as DFT have become a
standard tool for the accurate description of individual molecular processes.
Here, we discuss the present status of emerging methodologies which attempt to
achieve a (hopefully seamless) match of DFT with concepts from statistical
mechanics or thermodynamics, in order to also address the interplay of the
various molecular processes. The new quality of, and the novel insights that
can be gained by, such techniques is illustrated by how they allow the
description of crystal surfaces in contact with realistic gas-phase
environments.Comment: 24 pages including 17 figures, related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
- …