Abstract

The energy of Skyrmions is calculated with the help of a technique based on the excitonic representation: the basic set of one-exciton states is used for the perturbation-theory formalism instead of the basic set of one-particle states. We use the approach, at which a skyrmion-type excitation (at zero Lande factor) is considered as a smooth non-uniform rotation in the 3D spin space. The result within the framework of an excitonically diagonalized part of the Coulomb Hamiltonian can be obtained by any ratio rC=(e2/ϵlB)/ωcr_{\tiny C}=(e^2/\epsilon {}l_B)/\hbar \omega_c [where e2/ϵlBe^2/\epsilon {}l_B is the typical Coulomb energy (lB{}l_B being the magnetic length); ωc\omega_c is the cyclotron frequency], and the Landau-level mixing is thereby taken into account. In parallel with this, the result is also found exactly, to second order in terms of the rCr_{\tiny C} (if supposing rCr_{\tiny C} to be small) with use of the total Hamiltonian. When extrapolated to the region rC1r_{\tiny C}\sim 1, our calculations show that the skyrmion gap becomes substantially reduced in comparison with the Hartree-Fock calculations. This fact brings the theory essentially closer to the available experimental data.Comment: 14 pages, 1 figure. to appear in Phys. Rev. B, Vol. 65 (Numbers ~ 19-22), 200

    Similar works

    Full text

    thumbnail-image