34 research outputs found

    An experimental test of the viscous anisotropy hypothesis for partially molten rocks

    Full text link
    Chemical differentiation of rocky planets occurs by melt segregation away from the region of melting. The mechanics of this process, however, are complex and incompletely understood. In partially molten rocks undergoing shear deformation, melt pockets between grains align coherently in the stress field; it has been hypothesized that this anisotropy in microstructure creates an anisotropy in the viscosity of the aggregate. With the inclusion of anisotropic viscosity, continuum, two-phase-flow models reproduce the emergence and angle of melt-enriched bands that form in laboratory experiments. In the same theoretical context, these models also predict sample-scale melt migration due to a gradient in shear stress. Under torsional deformation, melt is expected to segregate radially inward. Here we present new torsional deformation experiments on partially molten rocks that test this prediction. Microstructural analyses of the distribution of melt and solid reveal a radial gradient in melt fraction, with more melt toward the centre of the cylinder. The extent of this radial melt segregation grows with progressive strain, consistent with theory. The agreement between theoretical prediction and experimental observation provides a validation of this theory, which is critical to understanding the large-scale geodynamic and geochemical evolution of Earth.Comment: 21 pages, 4 figures, 1 table, supplementary inf

    Velocity–conductivity relationships for mantle mineral assemblages in Archean cratonic lithosphere based on a review of laboratory data and Hashin–Shtrikman extremal bounds

    Get PDF
    Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Lithos 109 (2009): 131-143, doi:10.1016/j.lithos.2008.10.014.Can mineral physics and mixing theories explain field observations of seismic velocity and electrical conductivity, and is there an advantage to combining seismological and electromagnetic techniques? These two questions are at the heart of this paper. Using phenomologically-derived state equations for individual minerals coupled with multi-phase, Hashin-Shtrikman extremal-bound theory we derive the likely shear and compressional velocities and electrical conductivity at three depths, 100 km, 150 km and 200 km, beneath the central part of the Slave craton and beneath the Kimberley region of the Kaapvaal craton based on known petrologically-observed mineral abundances and magnesium numbers, combined with estimates of temperatures and pressures. We demonstrate that there are measurable differences between the physical properties of the two lithospheres for the upper depths, primarily due to the different ambient temperature, but that differences in velocity are negligibly small at 200 km. We also show that there is an advantage to combining seismic and electromagnetic data, given that conductivity is exponentially dependent on temperature whereas the shear and bulk moduli have only a linear dependence in cratonic lithospheric rocks. Focussing on a known discontinuity between harzburgite-dominated and lherzolitic mantle in the Slave craton at a depth of about 160 km, we demonstrate that the amplitude of compressional (P) wave to shear (S) wave conversions would be very weak, and so explanations for the seismological (receiver function) observations must either appeal to effects we have not considered (perhaps anisotropy), or imply that the laboratory data require further refinement

    Rheology of Diabase: Implications for Tectonics on Venus and Mars

    No full text
    Two important goals of our experimental investigation of the rheological behavior of diabase rocks were: (1) to determine flow laws describing their creep behavior over wide ranges of temperature, stress and strain rate and (2) to develop an understanding of the physical mechanisms by which these rocks flow under laboratory conditions. With this basis, a primary objective then was to construct constitutive equations that can be used to extrapolate from laboratory to planetary conditions. We specifically studied the rheological properties of both natural rock samples and synthetic aggregates. The former provided constraints for geologic systems, while the latter defined the relative contributions of the constituent mineral phases and avoided the influence of glass/melt found in natural samples. In addition, partially molten samples of crustal rock composition were deformed in shear to large strains (greater than 200%) important in crustal environments. The results of this research yielded essential rheological properties essential for models of crustal deformation on terrestrial planets, specifically Venus and Mars, as well as on the geodynamical evolution of these planets. Over the past three years, we also completed our investigation of the creep behavior of water ice with applications to the glaciers, ice sheets and icy satellites. Constitutive equations were determined that describe flow over a wide ranged of stress, strain rate, grain size and temperature. In the case of ice, three creep regimes were delineate. Extrapolation demonstrates that dislocation glide and grain boundary sliding processes dominate flow in ice I under planetary conditions and that diffusion creep is not an important deformation mechanism either in the laboratory or on icy satellites. These results have already been incorporated by other investigators into models describing, for example, the thickness and stability of the ice shell on Europa and to unravel long-standing discrepancies between field observations on glaciers and laboratory results

    Optical micrographs of olivine + melt samples deformed in torsion

    No full text
    An excel spreadsheet summarizes the experimental conditions of the samples included in this data set, and also includes figures that plot the azimuthally averaged, normalized melt fraction vs. the radius for the starting material and each experimental condition. For each sample (with the exception of experiment PT0767), the following data are included. 1. Tiles of 8-bit gray-scale optical microscopic images of 1000x1000 pixels. 1 pixel = 0.32 micron. There is ~20% overlapping between each tile. 2. A txt file registering the relative coordinates of each tile. 3. A black and white image with melt being white processed from the tiles and assembled by their coordinates. 1 pixel = 0.32 micron. 4. A mosaic microscopic image with lower resolution. In the file name, "OL" stands for optical light. 1 pixel = 1.3 micron. For experiment PT0767, no high resolution images were obtained for this sample. For experiment PT0817, two files with relative coordinates exist, with one overlapping row that can be used to stitch the two halves together.This data set contains high-resolution micrographs of the transverse sections of partially molten samples deformed in torsion. These micrographs present the distribution of melt induced by deformation, which is a test of the melt segregation processes predicted by the two-phase flow theory incorporating viscous anisotropy.NS

    EBSD data for sheared partially molten rocks (olivine + basalt)

    No full text
    The samples included in this data set are 0609, 0705, 0765, 0767, 0775, 0817. Files are .ctf files exported from the HKL channel5 software. Basic noise reduction has been done as described in the paper. Each file is named by the sample number and the section of the map.This data set contains the EBSD data for samples of olivine + basaltic melt deformed in torsion. The results are published in "Crystallographic preferred orientation of olivine in sheared partially molten rocks: The source of the 'a-c switch'" by Chao Qi, Lars Hansen, David Wallis, Ben Holtzman and David Kohlstedt on Geochemistry, Geophysics, Geosystems (G-cubed) 2018.NSF OCE-1459717NSF EAR-1520647NERC NE/M000966/

    Dislocation creep accommodated by grain boundary sliding in dunite

    No full text

    Diffusion Creep of Enstatite at High Pressures Under Hydrous Conditions

    No full text
    Mantle convection and large-scale plate motion depend critically on the nature of the lithosphere-asthenosphere boundary and thus on the viscosity structure of Earth's upper mantle, which is determined by the rheological properties of its constituent minerals. To constrain the flow behavior of orthopyroxene, the second most abundant constituent of the upper mantle, deformation experiments were carried out in triaxial compressive creep on fine-grained (similar to 6m) samples of enstatite at high pressures (3.8-6.3GPa) and high temperatures (1323-1573K) using a deformation-DIA apparatus. Based on results from this study, the deformation behavior of enstatite is quantitatively presented in the form of a flow law that describes the dependence of deformation rate on differential stress, water fugacity, temperature, and pressure. Specifically, the creep rate depends approximately linearly on stress, indicating deformation in the diffusion creep regime. A least squares regression fit to our data yielded a flow law for diffusion creep with an activation energy of similar to 200kJ/mol and an activation volume of similar to 14x10(-6)m(3)/mol. The magnitude of the water-weakening effect is similar to that for olivine with a water fugacity exponent of r approximate to 0.7. This strong dependence of viscosity on water fugacity (concentration) indicates that the viscosity of an orthopyroxene-bearing mantle varies from one geological setting to another, depending on the large-scale water distribution. Based on the rheology contrast between olivine and enstatite, we conclude that olivine is weaker than enstatite throughout most of the upper mantle except in some shallow regions in the diffusion creep regime

    Melt Network Reorientation and Crystallographic Preferred Orientation Development in Sheared Partially Molten Rocks

    No full text
    Abstract We investigated the co‐evolution of melt, shape, and crystallographic preferred orientations (MPOs, SPOs, and CPOs) in experimentally deformed partially molten rocks, from which we calculated the influence of MPO and CPO on seismic anisotropy. Olivine‐basalt aggregates containing 2 to 4 wt% melt were deformed in general shear at a temperature of 1,250°C under a confining pressure of 300 MPa at shear stresses of τ ≤ 175 MPa to shear strains of γ ≤ 2.3. Grain‐scale melt pockets developed a MPO parallel to the loading direction by γ < 0.4. At higher strains, the grain‐scale MPO remained parallel to the loading direction, while incipient sample‐scale melt bands formed at ∼20° to the grain‐scale MPO. An initial SPO and CPO were induced during sample preparation, with [100] and [001] axes girdled perpendicular to the long axis of the starting material. At the highest explored strain, a strong SPO was established subperpendicular to the loading direction, and the [100] axes of the CPO clustered nearly parallel to the shear plane. Our results demonstrate that grain‐scale and sample‐scale alignments of melt pockets are distinct. Furthermore, the melt and the solid microstructures evolve on different timescales: in planetary bodies, changes in the stress field will drive a relatively fast reorientation of the melt network and a relatively slow realignment of the crystallographic axes. Rapid changes to seismic anisotropy in a deforming partially molten aggregate are thus caused by MPO rather than CPO

    Experimental investigation of the creep behavior of MgO at high pressures

    No full text
    Abstract. The high-temperature rheological behavior of polycrystalline periclase, MgO, has been investigated using the deformation-DIA on a synchrotron beamline at pressures up to 10 GPa. Significant experimental scatter in stress measurement illustrates current limitations of this technique. Although temperature and stress sensitivities are not well constrained, there is a clear dependence of creep rate on pressure. Based on our results, the creep rate of MgO depends on confining pressure with an activation volume of V* ≈ ×10 -6 m 3 /mol. The grain-scale view of deformation processes reveals, as other D-DIA studies have, that subpopulations of grains, grouped by orientation, obey slightly different flow laws. The measurements also reveal that stress heterogeneity in the sample, whether caused by external conditions or processes internal to the sample itself, contribute a significant portion of the overall uncertainty in stress measurement
    corecore