508 research outputs found

    Slow dynamics and stress relaxation in a liquid as an elastic medium

    Full text link
    We propose a new framework to discuss the transition from exponential relaxation in a liquid to the regime of slow dynamics. For the purposes of stress relaxation, we show that a liquid can be treated as an elastic medium. We discuss that, on lowering the temperature, the feed-forward interaction mechanism between local relaxation events becomes operative, and results in slow relaxation.Comment: changed conten

    Rotational Brownian motion on the sphere surface and rotational relaxation

    Full text link
    The spatial components of the autocorrelation function of noninteracting dipoles are analytically obtained in terms of rotational Brownian motion on the surface of a unit sphere using multi-level jumping formalism based on Debye's rotational relaxation model, and the rotational relaxation functions are evaluated.Comment: RevTex, 4 pages, submitted to Chin. Phys. Let

    Parametric coding of stereo audio

    Get PDF
    Parametric-stereo coding is a technique to efficiently code a stereo audio signal as a monaural signal plus a small amount of parametric overhead to describe the stereo image. The stereo properties are analyzed, encoded, and reinstated in a decoder according to spatial psychoacoustical principles. The monaural signal can be encoded using any (conventional) audio coder. Experiments show that the parameterized description of spatial properties enables a highly efficient, high-quality stereo audio representation

    Twist glass transition in regioregulated poly(3-alkylthiophenes)s

    Full text link
    The molecular structure and dynamics of regioregulated poly(3-butylthiophene) (P3BT), poly(3-hexylthiophene)(P3HT), and poly(3-dodecylthiophene) (P3DDT) were investigated using Fourier transform infrared absorption (FTIR), solid state 13^{13}C nuclear magnetic resonance (NMR), and differential scanning calorimetry (DSC) measurements. In the DSC measurements, the endothermic peak was obtained around 340 K in P3BT, and assigned to enthalpy relaxation that originated from the glass transition of the thiophene ring twist in crystalline phase from results of FTIR, 13^{13}C cross-polarization and magic-angle spinning (CPMAS) NMR, 13^{13}C spin-lattice relaxation time measurements, and centerband-only detection of exchange (CODEX) measurements. We defined this transition as {\it twist-glass transition}, which is analogous to the plastic crystal - glassy crystal transition.Comment: 9 pages, 10 figures, 2 tables. Phys.Rev.B, in pres

    The Infra‐Red Absorption Spectrum of Propane

    Full text link
    Of the twenty‐seven internal degrees of freedom of propane, all nondegenerate, twenty‐two may appear as fundamental absorption bands. These bands fall into three symmetry classes, designated A1, B1 and B2, and distinguishable by their characteristic contours. Because of overlapping, however, it is impossible in many cases to determine their positions precisely. This is especially true in the regions of the C☒H valence and deformation frequencies. Some ten or twelve fundamental bands may be identified with confidence as well as a number of combinations. An A1 band at 870 cm—1 and a B2 band at 748 cm—1 have been partially resolved, the line spacing being about 1.47 cm—1 in agreement with predictions based upon electron diffraction measurements. The fine structure of the B1 bands has not been observed (the predicted spacing is 0.5 cm—1) but the interval between maxima of the P and R branches is approximately 26 cm—1 as expected. With 24 cm‐atmospheres of gas no bands were observed between 15μ and 35μ, although the symmetrical C☒C deformation might be expected to produce a band of appreciable intensity within these limits. This frequency has apparently been observed in Raman spectra at 375 cm—1.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70815/2/JCPSA6-9-7-487-1.pd

    A Hybrid model for the origin of photoluminescence from Ge nanocrystals in SiO2_2 matrix

    Full text link
    In spite of several articles, the origin of visible luminescence from germanium nanocrystals in SiO2_2 matrix is controversial even today. Some authors attribute the luminescence to quantum confinement of charge carriers in these nanocrystals. On the other hand, surface or defect states formed during the growth process, have also been proposed as the source of luminescence in this system. We have addressed this long standing query by simultaneous photoluminescence and Raman measurements on germanium nanocrystals embedded in SiO2_2 matrix, grown by two different techniques: (i) low energy ion-implantation and (ii) atom beam sputtering. Along with our own experimental observations, we have summarized relevant information available in the literature and proposed a \emph{Hybrid Model} to explain the visible photoluminescence from nanocrystalline germanium in SiO2_2 matrix.Comment: 23 pages, 8 figure

    Anomalous Rotational Relaxation: A Fractional Fokker-Planck Equation Approach

    Full text link
    In this study we obtained analytically relaxation function in terms of rotational correlation functions based on Brownian motion for complex disordered systems in a stochastic framework. We found out that rotational relaxation function has a fractional form for complex disordered systems, which indicates relaxation has non-exponential character obeys to Kohlrausch-William-Watts law, following the Mittag-Leffler decay.Comment: Revtex4, 9 pages. Paper was revised. References adde

    The Ehrenfest urn revisited: Playing the game on a realistic fluid model

    Get PDF
    The Ehrenfest urn process, also known as the dogs and fleas model, is realistically simulated by molecular dynamics of the Lennard-Jones fluid. The key variable is Delta z, i.e. the absolute value of the difference between the number of particles in one half of the simulation box and in the other half. This is a pure-jump stochastic process induced, under coarse graining, by the deterministic time evolution of the atomic coordinates. We discuss the Markov hypothesis by analyzing the statistical properties of the jumps and of the waiting times between jumps. In the limit of a vanishing integration time-step, the distribution of waiting times becomes closer to an exponential and, therefore, the continuous-time jump stochastic process is Markovian. The random variable Delta z behaves as a Markov chain and, in the gas phase, the observed transition probabilities follow the predictions of the Ehrenfest theory.Comment: Accepted by Physical Review E on 4 May 200

    Relation between positional specific heat and static relaxation length: Application to supercooled liquids

    Full text link
    A general identification of the {\em positional specific heat} as the thermodynamic response function associated with the {\em static relaxation length} is proposed, and a phenomenological description for the thermal dependence of the static relaxation length in supercooled liquids is presented. Accordingly, through a phenomenological determination of positional specific heat of supercooled liquids, we arrive at the thermal variation of the static relaxation length ξ\xi, which is found to vary in accordance with ξ(TT0)ν\xi \sim (T-T_0)^{-\nu} in the quasi-equilibrium supercooled temperature regime, where T0T_0 is the Vogel-Fulcher temperature and exponent ν\nu equals unity. This result to a certain degree agrees with that obtained from mean field theory of random-first-order transition, which suggests a power law temperature variation for ξ\xi with an apparent divergence at T0T_0. However, the phenomenological exponent ν=1\nu = 1, is higher than the corresponding mean field estimate (becoming exact in infinite dimensions), and in perfect agreement with the relaxation length exponent as obtained from the numerical simulations of the same models of structural glass in three spatial dimensions.Comment: Revised version, 7 pages, no figures, submitted to IOP Publishin
    corecore