346 research outputs found

    Microfluidic free-flow electrophoresis for proteomics-on-a-chip

    Get PDF
    A new free-flow electrophoresis microchip with integrated permeable membranes was developed, and different substances were separated by free-flow zone electrophoresis, free-flow isoelectric focusing and free-flow field step electrophoresis. This chip contained a new type of membranes enabling a stable carrier flow with a perpendicular electrical current. Due to this chip configuration, the device performance and efficiency were superior to recenty published alternative systems in terms of separation resolution and sample capacity. The results furthermore indicate that even better results are possible. Analytes were separated and focused within hundreds of milliseconds whereby only nanoliters of samples were consumed. In addition, a new sample steering method was demonstrated during free-flow zone electrophoresis, allowing the specific sorting of various components. As an alternative, a free-flow electrophoresis chip was developed with integated platinum electrodes, whereby the generation of gas bubbles caused by electrolysis was successfully suppressed by chemical means. Gas bubbles generated by electrolysis are major concern in free-flow electrophoresis systems in general leading to distorted separation. Based on the results, a fourth free-flow chip was developed with an integrated surface plasmon resonance gold detection region. Although fabrication was successful, certain hurdles, in particular surface chemistry issues still remain to be overcome to perform separation and real-time detection of biological samples within this hyphenated micro device. A strategy for proteomics-on-a-chip was developed aiming at the separation of antigens that play a role in autoimmune diseases. In addition two new continuous flow microfluidic chips were developed allowing for continuous biochemical reactions of surface patterning applications. These devices could be of further interest in future, in particular in more complex analytical systems related to proteomics-on-a-chip

    A microfluidic device for array patterning by perpendicular electrokinetic focusing

    Get PDF
    This paper describes a microfluidic chip in which two perpendicular laminar-flow streams can be operated to sequentially address the surface of a flow-chamber with semi-parallel sample streams. The sample streams can be controlled in position and width by the method of electrokinetic focusing. For this purpose, each of the two streams is sandwiched by two parallel sheath flow streams containing just a buffer solution. The streams are being electroosmotically pumped, allowing a simple chip design and a setup with no moving parts. Positioning of the streams was adjusted in real-time by controlling the applied voltages according to an analytical model. The perpendicular focusing gives rise to overlapping regions, which, by combinatorial (bio) chemistry, might be used for fabrication of spot arrays of immobilized proteins and other biomolecules. Since the patterning procedure is done in a closed, liquid filled flow-structure, array spots will never be exposed to air and are prevented from drying. With this device configuration, it was possible to visualize an array of 49 spots on a surface area of 1 mm2. This article describes the principle, fabrication, experimental results, analytical modeling and numerical simulations of the microfluidic chip.\ud \ud \ud \u

    Proteomics-on-a-chip for Biomarker discovery

    Get PDF
    In proteomics research still two-dimensional gel electrophoresis (2D-GE) is currently used for biomarker discovery. We applied free flow electrophoresis (FFE) separation technology combined with biomolecular interaction sensing using Surface Plasmon Resonance (SPR) imaging in an integrated proteomics-on-a-chip device as a proof of concept for biomarker discovery

    Polydimethylsiloxane (PDMS) Sub-Micron Traps for Single-Cell Analysis of Bacteria

    Get PDF
    Probst C, Grünberger A, Wiechert W, Kohlheyer D. Polydimethylsiloxane (PDMS) Sub-Micron Traps for Single-Cell Analysis of Bacteria. Micromachines. 2013;4(4):357-369.Microfluidics has become an essential tool in single-cell analysis assays for gaining more accurate insights into cell behavior. Various microfluidics methods have been introduced facilitating single-cell analysis of a broad range of cell types. However, the study of prokaryotic cells such as Escherichia coli and others still faces the challenge of achieving proper single-cell immobilization simply due to their small size and often fast growth rates. Recently, new approaches were presented to investigate bacteria growing in monolayers and single-cell tracks under environmental control. This allows for high-resolution time-lapse observation of cell proliferation, cell morphology and fluorescence-coupled bioreporters. Inside microcolonies, interactions between nearby cells are likely and may cause interference during perturbation studies. In this paper, we present a microfluidic device containing hundred sub-micron sized trapping barrier structures for single E. coli cells. Descendant cells are rapidly washed away as well as components secreted by growing cells. Experiments show excellent growth rates, indicating high cell viability. Analyses of elongation and growth rates as well as morphology were successfully performed. This device will find application in prokaryotic single-cell studies under constant environment where by-product interference is undesired

    Rapid inoculation of single bacteria into parallel picoliter fermentation chambers

    Get PDF
    Probst C, Grünberger A, Braun N, et al. Rapid inoculation of single bacteria into parallel picoliter fermentation chambers. Analytical methods. 2015;7(1):91-98.Microfluidic single-cell cultivation devices have been successfully utilized in a variety of biological research fields. One major obstacle to the successful implementation of high throughput single-cell cultivation technology is the requirement for a simple, fast and reliable cell inoculation procedure. In the present report, an air-bubble-based cell loading methodology is described and validated for inoculating single bacteria into multiple picoliter sized growth chambers arranged in a highly parallel manner. It is shown that the application of the injected air bubble can serve as a reproducible mechanism to modify laminar flow conditions. In this way, convective flow was temporarily induced in more than 1000 cultivation chambers simultaneously, which under normal conditions operate exclusively under diffusive mass transport. Within an inoculation time of 100 s, Corynebacterium glutamicum cells were inoculated by convection at minimal stress level and single bacteria remain successfully trapped by cell-wall interactions. The procedure is easy, fast, gentle and requires only minimal fluidic control and equipment. The technique is well suited for microbial cell loading into commonly used microfluidic growth sites arranged in parallel intended for high throughput single-cell analysis

    Germination and Growth Analysis of Streptomyces lividans at the Single-Cell Level Under Varying Medium Compositions

    Get PDF
    Quantitative single-cell cultivation has provided fundamental contributions to our understanding of heterogeneity among industrially used microorganisms. Filamentous growing Streptomyces species are emerging platform organisms for industrial production processes, but their exploitation is still limited due to often reported high batch-to-batch variations and unexpected growth and production differences. Population heterogeneity is suspected to be one responsible factor, which is so far not systematically investigated at the single-cell level. Novel microfluidic single-cell cultivation devices offer promising solutions to investigate these phenomena. In this study, we investigated the germination and growth behavior of Streptomyces lividans TK24 under varying medium compositions on different complexity levels (i.e., mycelial growth, hyphal growth and tip elongation) on single-cell level. Our analysis reveals a remarkable stability within growth and germination of spores and early mycelium development when exposed to constant and defined environments. We show that spores undergo long metabolic adaptation processes of up to > 30 h to adjust to new medium conditions, rather than using a “persister” strategy as a possibility to cope with rapidly changing environments. Due to this uniform behavior, we conclude that S. lividans can be cultivated quite robustly under constant environmental conditions as provided by microfluidic cultivation approaches. Failure and non-reproducible cultivations are thus most likely to be found in less controllable larger-scale cultivation workflows and as a result of environmental gradients within large-scale cultivations

    Microfluidic Picoliter Bioreactor for Microbial Single-cell Analysis: Fabrication, System Setup, and Operation

    Get PDF
    Grünberger A, Probst C, Heyer A, Wiechert W, Frunzke J, Kohlheyer D. Microfluidic Picoliter Bioreactor for Microbial Single-cell Analysis: Fabrication, System Setup, and Operation. Journal of visualized experiments. Bioengineering. 2013;82(82): e50560.In this protocol the fabrication, experimental setup and basic operation of the recently introduced microfluidic picoliter bioreactor (PLBR) is described in detail. The PLBR can be utilized for the analysis of single bacteria and microcolonies to investigate biotechnological and microbiological related questions concerning, e.g. cell growth, morphology, stress response, and metabolite or protein production on single-cell level. The device features continuous media flow enabling constant environmental conditions for perturbation studies, but in addition allows fast medium changes as well as oscillating conditions to mimic any desired environmental situation. To fabricate the single use devices, a silicon wafer containing sub micrometer sized SU-8 structures served as the replication mold for rapid polydimethylsiloxane casting. Chips were cut, assembled, connected, and set up onto a high resolution and fully automated microscope suited for time-lapse imaging, a powerful tool for spatio-temporal cell analysis. Here, the biotechnological platform organism Corynebacterium glutamicum was seeded into the PLBR and cell growth and intracellular fluorescence were followed over several hours unraveling time dependent population heterogeneity on single-cell level, not possible with conventional analysis methods such as flow cytometry. Besides insights into device fabrication, furthermore, the preparation of the preculture, loading, trapping of bacteria, and the PLBR cultivation of single cells and colonies is demonstrated. These devices will add a new dimension in microbiological research to analyze time dependent phenomena of single bacteria under tight environmental control. Due to the simple and relatively short fabrication process the technology can be easily adapted at any microfluidics lab and simply tailored towards specific needs

    microbeSEG: A deep learning software tool with OMERO data management for efficient and accurate cell segmentation

    Get PDF
    In biotechnology, cell growth is one of the most important properties for the characterization and optimization of microbial cultures. Novel live-cell imaging methods are leading to an ever better understanding of cell cultures and their development. The key to analyzing acquired data is accurate and automated cell segmentation at the single-cell level. Therefore, we present microbeSEG, a user-friendly Python-based cell segmentation tool with a graphical user interface and OMERO data management. microbeSEG utilizes a state-of-the-art deep learning-based segmentation method and can be used for instance segmentation of a wide range of cell morphologies and imaging techniques, e.g., phase contrast or fluorescence microscopy. The main focus of microbeSEG is a comprehensible, easy, efficient, and complete workflow from the creation of training data to the final application of the trained segmentation model. We demonstrate that accurate cell segmentation results can be obtained within 45 minutes of user time. Utilizing public segmentation datasets or pre-labeling further accelerates the microbeSEG workflow. This opens the door for accurate and efficient data analysis of microbial cultures

    Selective Pressure for Biofilm Formation in Bacillus subtilis: Differential Effect of Mutations in the Master Regulator SinR on Bistability

    Get PDF
    Kampf J, Gerwig J, Kruse K, et al. Selective Pressure for Biofilm Formation in Bacillus subtilis: Differential Effect of Mutations in the Master Regulator SinR on Bistability. mBio. 2018;9(5): e01464-18

    Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level

    Get PDF
    Nanda AM, Heyer A, Kramer C, Grünberger A, Kohlheyer D, Frunzke J. Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level. Journal of Bacteriology. 2014;196(1):180-188.The genome of the Gram-positive soil bacterium Corynebacterium glutamicum ATCC 13032 contains three integrated prophage elements (CGP1 to -3). Recently, it was shown that the large lysogenic prophage CGP3 (∼187 kbp) is excised spontaneously in a small number of cells. In this study, we provide evidence that a spontaneously induced SOS response is partly responsible for the observed spontaneous CGP3 induction. Whereas previous studies focused mainly on the induction of prophages at the population level, we analyzed the spontaneous CGP3 induction at the single-cell level using promoters of phage genes (Pint2 and Plysin) fused to reporter genes encoding fluorescent proteins. Flow-cytometric analysis revealed a spontaneous CGP3 activity in about 0.01 to 0.08% of the cells grown in standard minimal medium, which displayed a significantly reduced viability. A PrecA-eyfp promoter fusion revealed that a small fraction of C. glutamicum cells (∼0.2%) exhibited a spontaneous induction of the SOS response. Correlation of PrecA to the activity of downstream SOS genes (PdivS and PrecN) confirmed a bona fide induction of this stress response rather than stochastic gene expression. Interestingly, the reporter output of PrecA and CGP3 promoter fusions displayed a positive correlation at the single-cell level (ρ = 0.44 to 0.77). Furthermore, analysis of the PrecA-eyfp/Pint2-e2-crimson strain during growth revealed the highest percentage of spontaneous PrecA and Pint2 activity in the early exponential phase, when fast replication occurs. Based on these studies, we postulate that spontaneously occurring DNA damage induces the SOS response, which in turn triggers the induction of lysogenic prophages
    corecore