7,397 research outputs found

    Five-Dimensional Unification of the Cosmological Constant and the Photon Mass

    Get PDF
    Using a non-Riemannian geometry that is adapted to the 4+1 decomposition of space-time in Kaluza-Klein theory, the translational part of the connection form is related to the electromagnetic vector potential and a Stueckelberg scalar. The consideration of a five-dimensional gravitational action functional that shares the symmetries of the chosen geometry leads to a unification of the four-dimensional cosmological term and a mass term for the vector potential.Comment: 8 pages, LaTe

    Choosing an Organizational Structure for Your Aquaculture Business

    Get PDF
    There are approximately 2.3 million farms in the United States, ranging in size from small part-time farms to very large operations. Regardless of size, all farms are a form of business and can be organized or structured in several ways. Individuals involved in the business of fish farming need to be aware of the various organizational structures available to them, including sole proprietorship, partnerships (general and limited) and corporations (regular and subchapter-S). . The specific circumstances of the fish farm business dictate which of these structures is most suitable. For example, large farms with numerous employees and a large investment requirement may find it advantageous to consider a more formalized structure, such as a corporation

    Anomalous slow fidelity decay for symmetry breaking perturbations

    Full text link
    Symmetries as well as other special conditions can cause anomalous slowing down of fidelity decay. These situations will be characterized, and a family of random matrix models to emulate them generically presented. An analytic solution based on exponentiated linear response will be given. For one representative case the exact solution is obtained from a supersymmetric calculation. The results agree well with dynamical calculations for a kicked top.Comment: 4 pages, 2 figure

    Torsion Degrees of Freedom in the Regge Calculus as Dislocations on the Simplicial Lattice

    Get PDF
    Using the notion of a general conical defect, the Regge Calculus is generalized by allowing for dislocations on the simplicial lattice in addition to the usual disclinations. Since disclinations and dislocations correspond to curvature and torsion singularities, respectively, the method we propose provides a natural way of discretizing gravitational theories with torsion degrees of freedom like the Einstein-Cartan theory. A discrete version of the Einstein-Cartan action is given and field equations are derived, demanding stationarity of the action with respect to the discrete variables of the theory

    Combinatorial identities for binary necklaces from exact ray-splitting trace formulae

    Full text link
    Based on an exact trace formula for a one-dimensional ray-splitting system, we derive novel combinatorial identities for cyclic binary sequences (P\'olya necklaces).Comment: 15 page

    Parametric correlations versus fidelity decay: the symmetry breaking case

    Full text link
    We derive fidelity decay and parametric energy correlations for random matrix ensembles where time--reversal invariance of the original Hamiltonian is broken by the perturbation. Like in the case of a symmetry conserving perturbation a simple relation between both quantities can be established.Comment: 8 pages, 8 figure

    Supersymmetric Extensions of Calogero--Moser--Sutherland like Models: Construction and Some Solutions

    Full text link
    We introduce a new class of models for interacting particles. Our construction is based on Jacobians for the radial coordinates on certain superspaces. The resulting models contain two parameters determining the strengths of the interactions. This extends and generalizes the models of the Calogero--Moser--Sutherland type for interacting particles in ordinary spaces. The latter ones are included in our models as special cases. Using results which we obtained previously for spherical functions in superspaces, we obtain various properties and some explicit forms for the solutions. We present physical interpretations. Our models involve two kinds of interacting particles. One of the models can be viewed as describing interacting electrons in a lower and upper band of a one--dimensional semiconductor. Another model is quasi--two--dimensional. Two kinds of particles are confined to two different spatial directions, the interaction contains dipole--dipole or tensor forces.Comment: 21 pages, 4 figure

    On the minimization of Dirichlet eigenvalues of the Laplace operator

    Full text link
    We study the variational problem \inf \{\lambda_k(\Omega): \Omega\ \textup{open in}\ \R^m,\ |\Omega| < \infty, \ \h(\partial \Omega) \le 1 \}, where λk(Ω)\lambda_k(\Omega) is the kk'th eigenvalue of the Dirichlet Laplacian acting in L2(Ω)L^2(\Omega), \h(\partial \Omega) is the (m1)(m-1)- dimensional Hausdorff measure of the boundary of Ω\Omega, and Ω|\Omega| is the Lebesgue measure of Ω\Omega. If m=2m=2, and k=2,3,k=2,3, \cdots, then there exists a convex minimiser Ω2,k\Omega_{2,k}. If m2m \ge 2, and if Ωm,k\Omega_{m,k} is a minimiser, then Ωm,k:=int(Ωm,k)\Omega_{m,k}^*:= \textup{int}(\overline{\Omega_{m,k}}) is also a minimiser, and RmΩm,k\R^m\setminus \Omega_{m,k}^* is connected. Upper bounds are obtained for the number of components of Ωm,k\Omega_{m,k}. It is shown that if m3m\ge 3, and km+1k\le m+1 then Ωm,k\Omega_{m,k} has at most 44 components. Furthermore Ωm,k\Omega_{m,k} is connected in the following cases : (i) m2,k=2,m\ge 2, k=2, (ii) m=3,4,5,m=3,4,5, and k=3,4,k=3,4, (iii) m=4,5,m=4,5, and k=5,k=5, (iv) m=5m=5 and k=6k=6. Finally, upper bounds on the number of components are obtained for minimisers for other constraints such as the Lebesgue measure and the torsional rigidity.Comment: 16 page

    Gain without inversion in a biased superlattice

    Full text link
    Intersubband transitions in a superlattice under homogeneous electric field is studied within the tight-binding approximation. Since the levels are equi-populated, the non-zero response appears beyond the Born approximation. Calculations are performed in the resonant approximation with scattering processes exactly taken into account. The absorption coefficient is equal zero for the resonant excitation while a negative absorption (gain without inversion) takes place below the resonance. A detectable gain in the THz spectral region is obtained for the low-doped GaAsGaAs-based superlattice and spectral dependencies are analyzed taking into account the interplay between homogeneous and inhomogeneous mechanisms of broadening.Comment: 6 pages, 4 figure

    Damping of dHvA oscillations and vortex-lattice disorder in the peak-effect region of strong type-II superconductors

    Full text link
    The phenomenon of magnetic quantum oscillations in the superconducting state poses several questions that still defy satisfactory answers. A key controversial issue concerns the additional damping observed in the vortex state. Here, we show results of \mu SR, dHvA, and SQUID magnetization measurements on borocarbide superconductors, indicating that a sharp drop observed in the dHvA amplitude just below H_{c2} is correlated with enhanced disorder of the vortex lattice in the peak-effect region, which significantly enhances quasiparticle scattering by the pair potential.Comment: 4 pages 4 figure
    corecore