217 research outputs found

    Efficient Privacy-preserving Whole-Genome Variant Queries

    Get PDF
    MOTIVATION: Diagnosis and treatment decisions on genomic data have become widespread as the cost of genome sequencing decreases gradually. In this context, disease–gene association studies are of great importance. However, genomic data are very sensitive when compared to other data types and contains information about individuals and their relatives. Many studies have shown that this information can be obtained from the query-response pairs on genomic databases. In this work, we propose a method that uses secure multi-party computation to query genomic databases in a privacy-protected manner. The proposed solution privately outsources genomic data from arbitrarily many sources to the two non-colluding proxies and allows genomic databases to be safely stored in semi-honest cloud environments. It provides data privacy, query privacy and output privacy by using XOR-based sharing and unlike previous solutions, it allows queries to run efficiently on hundreds of thousands of genomic data. RESULTS: We measure the performance of our solution with parameters similar to real-world applications. It is possible to query a genomic database with 3 000 000 variants with five genomic query predicates under 400 ms. Querying 1 048 576 genomes, each containing 1 000 000 variants, for the presence of five different query variants can be achieved approximately in 6 min with a small amount of dedicated hardware and connectivity. These execution times are in the right range to enable real-world applications in medical research and healthcare. Unlike previous studies, it is possible to query multiple databases with response times fast enough for practical application. To the best of our knowledge, this is the first solution that provides this performance for querying large-scale genomic data. AVAILABILITY AND IMPLEMENTATION: https://gitlab.com/DIFUTURE/privacy-preserving-variant-queries. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    FRED—a framework for T-cell epitope detection

    Get PDF
    Summary: Over the last decade, immunoinformatics has made significant progress. Computational approaches, in particular the prediction of T-cell epitopes using machine learning methods, are at the core of modern vaccine design. Large-scale analyses and the integration or comparison of different methods become increasingly important. We have developed FRED, an extendable, open source software framework for key tasks in immunoinformatics. In this, its first version, FRED offers easily accessible prediction methods for MHC binding and antigen processing as well as general infrastructure for the handling of antigen sequence data and epitopes. FRED is implemented in Python in a modular way and allows the integration of external methods

    Charting a Dynamic DNA Methylation Landscape of the Human Genome

    No full text
    DNA methylation is a defining feature of mammalian cellular identity and essential for normal development(1,2). Most cell types, except germ cells and pre-implantation embryos(3–5), display relatively stable DNA methylation patterns with 70–80% of all CpGs being methylated(6). Despite recent advances we still have a too limited understanding of when, where and how many CpGs participate in genomic regulation. Here we report the in depth analysis of 42 whole genome bisulfite sequencing (WGBS) data sets across 30 diverse human cell and tissue types. We observe dynamic regulation for only 21.8% of autosomal CpGs within a normal developmental context, a majority of which are distal to transcription start sites. These dynamic CpGs co-localize with gene regulatory elements, particularly enhancers and transcription factor binding sites (TFBS), which allow identification of key lineage specific regulators. In addition, differentially methylated regions (DMRs) often harbor SNPs associated with cell type related diseases as determined by GWAS. The results also highlight the general inefficiency of WGBS as 70–80% of the sequencing reads across these data sets provided little or no relevant information regarding CpG methylation. To further demonstrate the utility of our DMR set, we use it to classify unknown samples and identify representative signature regions that recapitulate major DNA methylation dynamics. In summary, although in theory every CpG can change its methylation state, our results suggest that only a fraction does so as part of coordinated regulatory programs. Therefore our selected DMRs can serve as a starting point to help guide novel, more effective reduced representation approaches to capture the most informative fraction of CpGs as well as further pinpoint putative regulatory elements

    Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput peptide and protein identification technologies have benefited tremendously from strategies based on tandem mass spectrometry (MS/MS) in combination with database searching algorithms. A major problem with existing methods lies within the significant number of false positive and false negative annotations. So far, standard algorithms for protein identification do not use the information gained from separation processes usually involved in peptide analysis, such as retention time information, which are readily available from chromatographic separation of the sample. Identification can thus be improved by comparing measured retention times to predicted retention times. Current prediction models are derived from a set of measured test analytes but they usually require large amounts of training data.</p> <p>Results</p> <p>We introduce a new kernel function which can be applied in combination with support vector machines to a wide range of computational proteomics problems. We show the performance of this new approach by applying it to the prediction of peptide adsorption/elution behavior in strong anion-exchange solid-phase extraction (SAX-SPE) and ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC). Furthermore, the predicted retention times are used to improve spectrum identifications by a <it>p</it>-value-based filtering approach. The approach was tested on a number of different datasets and shows excellent performance while requiring only very small training sets (about 40 peptides instead of thousands). Using the retention time predictor in our retention time filter improves the fraction of correctly identified peptide mass spectra significantly.</p> <p>Conclusion</p> <p>The proposed kernel function is well-suited for the prediction of chromatographic separation in computational proteomics and requires only a limited amount of training data. The performance of this new method is demonstrated by applying it to peptide retention time prediction in IP-RP-HPLC and prediction of peptide sample fractionation in SAX-SPE. Finally, we incorporate the predicted chromatographic behavior in a <it>p</it>-value based filter to improve peptide identifications based on liquid chromatography-tandem mass spectrometry.</p

    OpenMS – An open-source software framework for mass spectrometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mass spectrometry is an essential analytical technique for high-throughput analysis in proteomics and metabolomics. The development of new separation techniques, precise mass analyzers and experimental protocols is a very active field of research. This leads to more complex experimental setups yielding ever increasing amounts of data. Consequently, analysis of the data is currently often the bottleneck for experimental studies. Although software tools for many data analysis tasks are available today, they are often hard to combine with each other or not flexible enough to allow for rapid prototyping of a new analysis workflow.</p> <p>Results</p> <p>We present OpenMS, a software framework for rapid application development in mass spectrometry. OpenMS has been designed to be portable, easy-to-use and robust while offering a rich functionality ranging from basic data structures to sophisticated algorithms for data analysis. This has already been demonstrated in several studies.</p> <p>Conclusion</p> <p>OpenMS is available under the Lesser GNU Public License (LGPL) from the project website at <url>http://www.openms.de</url>.</p

    Prospects for a Statistical Theory of LC/TOFMS Data

    Get PDF
    The critical importance of employing sound statistical arguments when seeking to draw inferences from inexact measurements is well-established throughout the sciences. Yet fundamental statistical methods such as hypothesis testing can currently be applied to only a small subset of the data analytical problems encountered in LC/MS experiments. The means of inference that are more generally employed are based on a variety of heuristic techniques and a largely qualitative understanding of their behavior. In this article, we attempt to move towards a more formalized approach to the analysis of LC/TOFMS data by establishing some of the core concepts required for a detailed mathematical description of the data. Using arguments that are based on the fundamental workings of the instrument, we derive and validate a probability distribution that approximates that of the empirically obtained data and on the basis of which formal statistical tests can be constructed. Unlike many existing statistical models for MS data, the one presented here aims for rigor rather than generality. Consequently, the model is closely tailored to a particular type of TOF mass spectrometer although the general approach carries over to other instrument designs. Looking ahead, we argue that further improvements in our ability to characterize the data mathematically could enable us to address a wide range of data analytical problems in a statistically rigorous manner
    corecore