123 research outputs found

    Shock-induced star cluster formation in colliding galaxies

    Full text link
    We studied the formation process of star clusters using high-resolution N-body/smoothed particle hydrodynamcs simulations of colliding galaxies. The total number of particles is 1.2x10^8 for our high resolution run. The gravitational softening is 5 pc and we allow gas to cool down to \sim 10 K. During the first encounter of the collision, a giant filament consists of cold and dense gas found between the progenitors by shock compression. A vigorous starburst took place in the filament, resulting in the formation of star clusters. The mass of these star clusters ranges from 10^{5-8} Msun. These star clusters formed hierarchically: at first small star clusters formed, and then they merged via gravity, resulting in larger star clusters.Comment: 4 pages, 3 figures, Proceedings of IAU Symposium 270, Computational Star Formatio

    Toward first-principle simulations of galaxy formation: I. How should we choose star formation criteria in high-resolution simulations of disk galaxies?

    Full text link
    We performed 3-dimensional N-body/SPH simulations to study how mass resolution and other model parameters such as the star formation efficiency parameter, C* and the threshold density, nth affect structures of the galactic gaseous/stellar disk in a static galactic potential. We employ 10^6 - 10^7 particles to resolve a cold and dense (T 100 cm^{-3}) phase. We found that structures of the ISM and the distribution of young stars are sensitive to the assumed nth. High-nth models with nth = 100 cm^{-3} yield clumpy multi-phase features in the ISM. Young stars are distributed in a thin disk of which half-mass scale height is 10 - 30 pc. In low-nth models with nth = 0.1 cm^{-3}, the stellar disk is found to be several times thicker, and the gas disk appears smoother than the high-nth models. A high-resolution simulation with high-nth is necessary to reproduce the complex structure of the gas disk. The global properties of the model galaxies in low-nth models, such as star formation histories, are similar to those in the high-nth models when we tune the value of C* so that they reproduce the observed relation between surface gas density and surface star formation rate density. We however emphasize that high-nth models automatically reproduce the relation, regardless of the values of C*. The ISM structure, phase distribution, and distributions of young star forming region are quite similar between two runs with values of C* which differ by a factor of 15. We also found that the timescale of the flow from n_H ~1 cm^{-3} to n_H > 100 cm^{-3} is about 5 times as long as the local dynamical time and is independent of the value of C*. The use of a high-nth criterion for star formation in high-resolution simulations makes numerical models fairy insensitive to the modelling of star formation. (Abridged)Comment: 15 pages, 14 figures, accepted for publication in PASJ. Abridged abstract. For high resolution figures, see http://www.cfca.nao.ac.jp/~saitoh/Papers/2008/Saitoh+2008a.pd

    Toward First-Principle Simulations of Galaxy Formation: II. Shock-Induced Starburst at a Collision Interface During the First Encounter of Interacting Galaxies

    Full text link
    We investigated the evolution of interacting disk galaxies using high-resolution NN-body/SPH simulations, taking into account the multiphase nature of the interstellar medium (ISM). In our high-resolution simulations, a large-scale starburst occurred naturally at the collision interface between two gas disks at the first encounter, resulting in the formation of star clusters. This is consistent with observations of interacting galaxies. The probability distribution function (PDF) of gas density showed clear change during the galaxy-galaxy encounter. The compression of gas at the collision interface between the gas disks first appears as an excess at nH10cm3n_{\rm H} \sim 10{\rm cm^{-3}} in the PDF, and then the excess moves to higher densities (nH100cm3n_{\rm H} \gtrsim 100{\rm cm^{-3}}) in a few times 10710^7 years where starburst takes place. After the starburst, the PDF goes back to the quasi-steady state. These results give a simple picture of starburst phenomena in galaxy-galaxy encounters.Comment: 6 pages, 6 figures, accepted to PASJ. For high resolution figures, see http://www.cfca.nao.ac.jp/~saitoh/Papers/2009/Saitoh+2009a.pd

    N-body simulation for self-gravitating collisional systems with a new SIMD instruction set extension to the x86 architecture, Advanced Vector eXtensions

    Full text link
    We present a high-performance N-body code for self-gravitating collisional systems accelerated with the aid of a new SIMD instruction set extension of the x86 architecture: Advanced Vector eXtensions (AVX), an enhanced version of the Streaming SIMD Extensions (SSE). With one processor core of Intel Core i7-2600 processor (8 MB cache and 3.40 GHz) based on Sandy Bridge micro-architecture, we implemented a fourth-order Hermite scheme with individual timestep scheme (Makino and Aarseth, 1992), and achieved the performance of 20 giga floating point number operations per second (GFLOPS) for double-precision accuracy, which is two times and five times higher than that of the previously developed code implemented with the SSE instructions (Nitadori et al., 2006b), and that of a code implemented without any explicit use of SIMD instructions with the same processor core, respectively. We have parallelized the code by using so-called NINJA scheme (Nitadori et al., 2006a), and achieved 90 GFLOPS for a system containing more than N = 8192 particles with 8 MPI processes on four cores. We expect to achieve about 10 tera FLOPS (TFLOPS) for a self-gravitating collisional system with N 105 on massively parallel systems with at most 800 cores with Sandy Bridge micro-architecture. This performance will be comparable to that of Graphic Processing Unit (GPU) cluster systems, such as the one with about 200 Tesla C1070 GPUs (Spurzem et al., 2010). This paper offers an alternative to collisional N-body simulations with GRAPEs and GPUs.Comment: 14 pages, 9 figures, 3 tables, accepted for publication in New Astronomy. The code is publicly available at http://code.google.com/p/phantom-grape

    Cluster Morphologies as a Test of Different Cosmological Models

    Full text link
    We investigate how cluster morphology is affected by the cosmological constant in low-density universes. Using high-resolution cosmological N-body/SPH simulations of flat (\Omega_0 = 0.3, \lambda_0 = 0.7, \Lambda CDM) and open (\Omega_0 = 0.3, \lambda_0 = 0, OCDM) cold dark matter universes, we calculate statistical indicators to quantify the irregularity of the cluster morphologies. We study axial ratios, center shifts, cluster clumpiness, and multipole moment power ratios as indicators for the simulated clusters at z=0 and 0.5. Some of these indicators are calculated for both the X-ray surface brightness and projected mass distributions. In \Lambda CDM all these indicators tend to be larger than those in OCDM at z=0. This result is consistent with the analytical prediction of Richstone, Loeb, & Turner, that is, clusters in \Lambda CDM are formed later than in OCDM, and have more substructure at z=0. We make a Kolmogorov-Smirnov test on each indicator for these two models. We then find that the results for the multipole moment power ratios and the center shifts for the X-ray surface brightness are under the significance level (5%). We results also show that these two cosmological models can be distinguished more clearly at z=0 than z = 0.5 by these indicators.Comment: 30pages, 6figures, Accepted for publication in Ap

    ARGOT: Accelerated radiative transfer on grids using oct-tree

    Full text link
    We present two types of numerical prescriptions that accelerate the radiative transfer calculation around point sources within a three-dimensional Cartesian grid by using the oct-tree structure for the distribution of radiation sources. In one prescription, distant radiation sources are grouped as a bright extended source when the group's angular size, θs\theta_{\rm s}, is smaller than a critical value, θcrit\theta_{\rm crit}, and radiative transfer is solved on supermeshes whose angular sizes are similar to that of the group of sources. The supermesh structure is constructed by coarse-graining the mesh structure. With this method, the computational time scales with Nmlog(Nm)log(Ns)N_{\rm m} \log(N_{\rm m}) \log(N_{\rm s}) where NmN_{\rm m} and NsN_{\rm s} are the number of meshes and that of radiation sources, respectively. While this method is very efficient, it inevitably overestimates the optical depth when a group of sources acts as an extended powerful radiation source and affects distant meshes. In the other prescription, a distant group of sources is treated as a bright point source ignoring the spatial extent of the group and the radiative transfer is solved on the meshes rather than the supermeshes. This prescription is simply a grid-based version of {\scriptsize START} by Hasegawa & Umemura and yields better results in general with slightly more computational cost (Nm4/3log(Ns)\propto N_{\rm m}^{4/3} \log(N_{\rm s})) than the supermesh prescription. Our methods can easily be implemented to any grid-based hydrodynamic codes and are well-suited to the adaptive mesh refinement methods.Comment: 13 pages, 12 figures, submitted to MNRAS. Revised according to referee's comment

    Gastrin and Somatostatin in Patients with Hyperchlorhydric Duodenal Ulcer

    Get PDF
    Hormonal and morphological studies were conducted to ascertain the role played by gastrin and somatostatin in the pathophysiology of duodenal ulcer, in particular hyperchlorhydric duodenal ulcer, using 35 patients with duodenal ulcer, of whom 15 were hyperchlorhydric and 20 were normochlorhydric. Twenty normal subjects with normochlorhydria were used as a control. In patients with hyperchlorhydric duodenal ulcer following significant findings were observed: 1. Basal and stimulated hyperchlorhydria, 2. Parietal cell hyperplasia, 3. Basal hypergastrinemia, 4. Increased concentration of gastrin and large number of G cells (G cell hyperplasia) in the antral mucosa. 5. Mucosal concentration of somatostatin and D cells in the antrum was reduced, but the former in patients with hyperchlorhydric duodenal ulcer was not different from that in patients with normoacidic duodenal ulcer. 6. A significant correlation in mucosal concentration was demonstrated between gastrin and somatostatin in control subjects but not in patients with duodenal ulcer. 7. There was a significant correlation in maximal acidity in gastric secretion and mucosal concentration of antral somatostatin in control subjects but not in patients with duodenal ulcer. 8. Concentration of plasma somatostatin in patients with duodenal ulcer was not different from that in control subjects. These findings indicate that gastrin and somatostatin may participate in the pathophysiology of duodenal ulcer, at least in the subgroup of duodenal ulcer associated with hyperchlorhydria, and the subgroup of duodenal ulcer may be an endocrine disorder

    Oligomerization of Hepatitis C Virus Core Protein is Crucial for Interaction with the Cytoplasmic Domain of E1 Envelope Protein

    Get PDF
    Hepatitis C virus (HCV) contains two membrane-associated envelope glycoproteins, E1 and E2, which assemble as a heterodimer in the endoplasmic reticulum (ER). In this study, predictive algorithms and genetic analyses of deletion mutants and glycosylation site variants of the E1 glycoprotein were used to suggest that the glycoprotein can adopt two topologies in the ER membrane: the conventional type I membrane topology and a polytopic topology in which the protein spans the ER membrane twice with an intervening cytoplasmic loop (amino acid residues 288 to 360). We also demonstrate that the E1 glycoprotein is able to associate with the HCV core protein, but only upon oligomerization of the core protein in the presence of tRNA to form capsid-like structures. Yeast two-hybrid and immunoprecipitation analyses reveal that oligomerization of the core protein is promoted by amino acid residues 72 to 91 in the core. Furthermore, the association between the E1 glycoprotein and the assembled core can be recapitulated using a fusion protein containing the putative cytoplasmic loop of the E1 glycoprotein. This fusion protein is also able to compete with the intact E1 glycoprotein for binding to the core. Mutagenesis of the cytoplasmic loop of E1 was used to define a region of four amino acids (residues 312 to 315) that is important for interaction with the assembled HCV core. Taken together, our studies suggest that interaction between the self-oligomerized HCV core and the E1 glycoprotein is mediated through the cytoplasmic loop present in a polytopic form of the E1 glycoprotein
    corecore