129 research outputs found

    EchidnaCSI – improving monitoring of a cryptic species at continental scale using Citizen Science

    Get PDF
    Short-beaked echidna (Tachyglossus aculeatus) are a cryptic and iconic monotreme found throughout the continent of Australia. Despite observational records spanning many years aggregated in national and state biodiversity databases, the spatial and temporal intensity of sightings is limited. Although the species is of least conservation concern at the global level, a subspecies has been declared endangered on Kangaroo Island in South Australia. We need better population data over the whole continent to inform this species’ conservation management. To increase the temporal and spatial resolution of observations which may be used for more accurate population assessments, we developed a mobile app for citizen scientists to easily record echidna sightings and improve the quantity, quality and distribution of data collected for monitoring this species. EchidnaCSI is a free, cross-platform (Android & iOS), open-source app that we developed to collect echidna observational data around Australia. EchidnaCSI has been in use since September 2017 and uses mobile phone sensors to transparently and automatically record metadata, such as species observation location and time and GPS location precision. We examine differences in spatial coverage between these observations and those in existing data repositories in the Atlas of Living Australia and state biodiversity databases, especially in relation to observations in protected areas and to an index of remoteness and accessibility. EchidnaCSI has contributed over 8000 echidna observations from around Australia, more than recorded in all state systems combined, with similar spatial distribution. Although coverage was more limited in some protected areas than the reference data sources, numbers of observations in all remote areas were greater than the reference scientific data except for very remote regions. EchidnaCSI has improved the spatial and temporal intensity of observations for this iconic species and provides a complement to scientific surveys, which might usefully focus on highly protected areas and very remote regions.Alan Stenhouse, Tahlia Perry, Frank Grützner, Megan Lewis, Lian Pin Ko

    COVID restrictions impact wildlife monitoring in Australia

    Get PDF
    The global COVID-19 pandemic has imposed restrictions on people's movement, work and access to places at multiple international, national and sub-national scales. We need a better understanding of how the varied restrictions have impacted wildlife monitoring as gaps in data continuity caused by these disruptions may limit future data use and analysis. To assess the effect of different levels of COVID-19 restrictions on both citizen science and traditional wildlife monitoring, we analyse observational records of a widespread and iconic monotreme, the Australian short- beaked echidna (Tachyglossus aculeatus), in three states of Australia. We compare citizen science to observations from biodiversity data repositories across the three states by analysing numbers of observations, coverage in protected areas, and geographic distribution using an index of remoteness and accessibility. We analyse the effect of restriction levels by comparing these data from each restriction level in 2020 with corresponding periods in 2018–2019. Our results indicate that stricter and longer restrictions reduced numbers of scientific observations while citizen science showed few effects, though there is much variation due to differences in restriction levels in each state. Geographic distribution and coverage of protected and non-protected areas were also reduced for scientific monitoring while citizen science observations were little affected. This study shows that citizen science can continue to record accurate and widely distributed species observational data, despite pandemic restrictions, and thus demonstrates the potential value of citizen science to other researchers who require reliable data during periods of disruption.Alan Stenhouse, Tahlia Perry, Frank Grützner, Peggy Rismiller, Lian Pin Koh, Megan Lewi

    Gravitational Wave Spectrum in Inflation with Nonclassical States

    Full text link
    The initial quantum state during inflation may evolve to a highly squeezed quantum state due to the amplification of the time-dependent parameter, ωphys(k/a)\omega_{phys}(k/a), which may be the modified dispersion relation in trans-Planckian physics. This squeezed quantum state is a nonclassical state that has no counterpart in the classical theory. We have considered the nonclassical states such as squeezed, squeezed coherent, and squeezed thermal states, and calculated the power spectrum of the gravitational wave perturbation when the mode leaves the horizon.Comment: 21 page

    Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    Get PDF
    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10-11 to 5.0 × 10-21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10-6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation
    corecore