
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Nature Conservation Drones for Automatic Localization and Counting of Animals

van Gemert, J.C.; Verschoor, C.R.; Mettes, P.; Epema, K.; Koh, L.P.; Wich, S.
DOI
10.1007/978-3-319-16178-5_17
Publication date
2015
Document Version
Submitted manuscript
Published in
Computer Vision - ECCV 2014 Workshops

Link to publication

Citation for published version (APA):
van Gemert, J. C., Verschoor, C. R., Mettes, P., Epema, K., Koh, L. P., & Wich, S. (2015).
Nature Conservation Drones for Automatic Localization and Counting of Animals. In L.
Agapito, M. M. Bronstein, & C. Rother (Eds.), Computer Vision - ECCV 2014 Workshops:
Zurich, Switzerland, September 6-7 and 12, 2014: proceedings (Vol. 1, pp. 255-270). (Lecture
Notes in Computer Science ; Vol. 8925). Springer. https://doi.org/10.1007/978-3-319-16178-
5_17

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1007/978-3-319-16178-5_17
https://dare.uva.nl/personal/pure/en/publications/nature-conservation-drones-for-automatic-localization-and-counting-of-animals(635f5326-5553-45cb-a1d4-97e25a657085).html
https://doi.org/10.1007/978-3-319-16178-5_17
https://doi.org/10.1007/978-3-319-16178-5_17


Nature Conservation Drones for
Automatic Localization and Counting of Animals

Jan C. van Gemert1, Camiel R. Verschoor23, Pascal Mettes1

Kitso Epema2, Lian Pin Koh4 and Serge Wich56

1 Intelligent Systems Lab Amsterdam, University of Amsterdam, The Netherlands.
2 Dutch Unmanned Aerial Solutions, http://dutchuas.nl/.

3 IDI Snowmobile, http://idisnow.com.
4 Applied Ecology & Conservation group, University of Adelaide.

5 Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam
6 School of Natural Sciences and Psychology, Liverpool John Moores University.

Abstract. This paper is concerned with nature conservation by auto-
matically monitoring animal distribution and animal abundance. Typi-
cally, such conservation tasks are performed manually on foot or after
an aerial recording from a manned aircraft. Such manual approaches are
expensive, slow and labor intensive. In this paper, we investigate the
combination of small unmanned aerial vehicles (UAVs or “drones”) with
automatic object recognition techniques as a viable solution to manual
animal surveying. Since no controlled data is available, we record our
own animal conservation dataset with a quadcopter drone. We evaluate
two nature conservation tasks: i) animal detection ii) animal counting
using three state-of-the-art generic object recognition methods that are
particularly well-suited for on-board detection. Results show that ob-
ject detection techniques for human-scale photographs do not directly
translate to a drone perspective, but that light-weight automatic object
detection techniques are promising for nature conservation tasks.

Keywords: Nature Conservation; micro UAVs; Object Detection.

1 Introduction

Accurate monitoring of the distribution and abundance of animal species over
time is a key ingredient to successful nature conservation [3, 4]. Successful con-
servation also requires data on possible threats to animals. Such threats can be
largely divided into habitat loss, disease and poaching. For some iconic species
like the rhino, the elephant, and the tiger, poaching has reached proportions that
places them at a high risk for local extinctions or even total extinction for some
(sub)species as in the case of elephants [2, 32].

Animal monitoring approaches typically involve both direct animal counts
and indirect counting of animal signs such as nests, dung, and calls. Conventional
ground surveys on foot can be time-consuming, costly, and nearly impossible to
achieve in remote areas. For example, ground surveys of orangutan populations
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Fig. 1. Animal conservation images taken from a drone. From left to right: an elephant,
an orangutan nest, and rhinos.

(Pongo spp.) in Sumatra, Indonesia can cost up to $250,000 for a three-year
survey cycle. Due to this high cost, surveys are not conducted at the frequency
required for proper statistical analysis of population trends. Furthermore, there
remain many remote forested areas that have never been surveyed. Aerial sur-
veys can overcome some of these constraints, although they have their own set
of limitations, including the high cost of buying or renting small planes or he-
licopters, the lack of availability in remote areas, and the risks involved with
flying low over landscapes in which landing is difficult, such as forests. There is
thus a need for alternative methods for animal surveys.

Conservation workers have started using small unmanned aerial vehicles
(UAVs, or “conservation drones”) both for determining animal abundance and
to obtain data on their threats [18, 20]. Conservation drones are relatively inex-
pensive and easy to build, which makes drones accessible and affordable for many
research teams in developing countries. These drones can fly fully autonomous
missions to obtain high-resolution still images and videos. Recent studies have
shown that the images from such drones can be used to detect not only large an-
imal species (e.g. orangutans, elephants, rhinos, whales) and animal tracks (e.g.
orang-utan nests, chimpanzee nests, turtle tracks), but also threats to animals
(e.g. signs of human activity [16, 21, 26, 35]). See Figure 1 for some examples of
conservation images taken from a drone. Currently, most drone systems record
data on board, which are then downloaded for manual visual inspection once the
drone has landed. For animal abundance surveys, the amount of recorded data
quickly grows to thousands of photos and hundreds of hours of video. Manually
sieving through these data in search of animals is labor-intensive and inherently
slow. There is therefore a strong need to automate the detection of relevant ob-
jects on the still or video images. Recent efforts combining human labeling and
automatic recognition seem promising [5], but this field is still in its infancy.

Another need for automated detection of objects comes from anti-poaching
efforts. Ideally, drones would do on-board object detection and then only send
the relevant images (i.e. those with a high probability of a positive identification)
of the object of interest, e.g. human, rhino, fire, down to the ground station for
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a manual visual inspection by the rangers in order to take appropriate actions.
This paper examines automatic object detection algorithms as a solution towards
detecting animals and humans from images obtained from drones. The aim is
to assess the potential of computer vision for surveys of animal abundance and
anti-poaching efforts.

The field of computer vision has matured enough to automatically find ob-
jects in images with reasonable accuracy. Such methods are typically designed
for and evaluated on general purpose objects by employing photographs from the
Internet [22]. Thus, such methods are tuned towards human photographs, taken
from a height of 1-2 meters with human-scale objects. Such objects can safely
be assumed to consist of observable parts [11] or to be found by object-saliency
methods (so called “object proposals”), tuned to human scale [1, 15, 17, 31]. Yet,
for drone imagery taken in high altitude (10-100m) the objects of interest are
relatively small, questioning the suitability of current methods that use individ-
ual parts or object-saliency. Moreover, drone images are taken from above which
results in a skewed vantage point, which changes influential surface and scene
properties [8] when compared to normal human pictures. It can therefore not
be taken for granted that current object detection methods for human-centered
imagery find a one-to-one application in conservation drones.

In this paper we evaluate how current object detection techniques as devel-
oped for human-centered imagery scale to drone-centered nature conservation
tasks. Because current object recognition methods make heavy use of object
proposals, we first evaluate whether such proposals are capable of detecting an-
imals in drone imagery. Next, we evaluate three light-weight object detection
methods on two nature conservation tasks: i) animal detection in single images;
ii) animal counting in video. We evaluate these two tasks on a novel fully an-
notated animal dataset recorded with a drone. The dataset consists of 18,356
frames containing 30 distinct animals. This work stems from a collaboration
between conservation biologists, aerospace engineers and computer vision re-
searchers. To facilitate a structured and repeatable evaluation we will make the
dataset, annotations, code, and all our results publicly available.

2 Related Work

2.1 Drones for nature conservation

Drones are air vehicles that do not carry a pilot on board and are capable of fly-
ing autonomously. These vehicles follow flight plans based on GPS coordinates
which are usually programmed before flight, but can also be changed during the
flight. There are many types of drones, ranging in weight from a few grams to
thousands of kilograms, varying in size from a few millimeters to tenths of meters
with configurations according to normal aircrafts, helicopters, multi-rotors and
flapping wings. The uses of these drones vary from the military to private con-
sumers. The type of drones that are specifically useful for nature conservation
are the modified model aircraft and multi-rotor. They are both affordable and
easily converted into a drone with highly affordable open source autopilots like
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Ardupilot [20] or Paparazzi [13]. The modified model aircrafts yield long flying
times and larger forward speed to cover more ground. In contrast, multi-rotor
drones yield great control of the position and orientation of the camera as well as
vertical take off and landing capabilities. Combine this with the birds eye view
for the camera and these drones are perfect for conservation. Here we focus on
the rotor-type drone.

Drones are currently already employed for conservation [20] for terrain map-
ping and classification of forest types [18, 16, 21, 35, 14]. These are examples of
uses where no real time data analysis is needed [5]. For the protection of animals
against poaching, real-time analysis is critical. This is recognized by the Wildlife
Conservation UAV Challenge [38], which focuses on the on-board processing of
data to find rhinos and humans. This is an international challenge (with almost
90 teams from all over the world) to create a cheap drone to help protect the
rhino. The techniques to find animals and humans in real-time with limited
computing power are not ready for real-world applications yet, validating our
research on this topic.

2.2 Automatic object detection

The current state-of-the-art in automatic object detection is based on large con-
volutional neural networks [15, 29]. Such “deep-learning” networks discrimina-
tively learn image features from the bottom-up and proved hugely successful on
global image classification [22]. The success of convolutional networks on full
images spills over to the related task of object detection where in addition to the
object class name, a detection bounding box around the object is required. The
bounding box is obtained by elegant object-saliency methods that output a small
set of only a few thousand bounding boxes that have a high likelihood to contain
any type of object [1, 31]. Such class-independent object-proposals serve as input
to the convolutional network, yielding state-of-the-art accuracy. Such accuracy,
however, relies heavily on modern computer hardware such as top of the line
CPUs and massively parallel GPU implementations. The recognition times us-
ing modern hardware are reported as 53 sec/image by R-CNN [15] on a CPU
and 13 sec/image on the GPU whereas OverFeat [29] operates at 2 sec/image
on an heavy-weight GPU. These hardware requirements are not feasible in a
light-weight drone, where every gram of weight reduces flight times. Since fast
response time is essential for animal protection, convolutional networks are as
of yet computationally too demanding for timely results on a drone.

Next to convolutional networks, other competitive object detection methods
are based on the bag-of-words (BOW) model [31, 33, 34] or its Fisher vector
incarnation [6, 28]. Such methods start with a limited set of object-proposals
to reduce the search space. Each proposal is represented with a histogram of
prototype counts of local features, e.g. sampled from interest points [9]. Larger
prototype vocabularies typically yield best results, resulting in features sizes
of over 170,000 [31] for BOW or over 300,000 for the Fisher vector [28] per
bounding box. On a mobile drone the internal memory is limited making such
large memory requirements of the BOW variants prohibitive.
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Fig. 2. Conservation evaluation pipeline. Animals are recorded on video or individual
images. The animals are automatically detected, yielding a bounding box per animal
per image. Individual detections are stitched together by tracking shared features to
obtain an automatic estimate on the number of animals.

Both the bag-of-words methods and the convolutional neural networks heav-
ily rely on high quality object proposals. These proposals are tuned to a human
scale, and we will first evaluate the suitability of object proposals for drone im-
agery. Successful low-memory and CPU-friendly object detection methods do not
use object proposals but simple and fast image features combined with a classi-
fier cascade. Such a cascade rejects obvious non-matching candidates early on;
only allotting more computation time to promising candidates. An example of
such an successful approach is the seminal Viola and Jones boosting method [36]
used in embedded face detection algorithms for consumer cameras, phones and
tablets. Other versions of a classifier cascade have been applied to a range of
object detection methods with impressive speed-up results. The popular De-
formable Part-based Model (DPM) of Felzenswalb et al. [11] models an object
as a constellation of parts and a classifier cascade in combination with a coarse-
to-fine search has successfully reduced computation time to 0.2 sec/image [10,
27]. Similarly, the examplar SVM approach for object detection [25] can be sped
up to 0.9 sec/image [23]. Cascade approaches are fast while retaining a reason-
able accuracy and are thus most suitable for on a drone. Therefore we will focus
our evaluation on the DPM and exemplar-based SVM methods.

3 Evaluating Nature Conservation

We evaluate two tasks for automatic nature conservation drones. i) animal de-
tection and ii) animal counting. Automatically detecting animals gives insight
in animal locations, which over time will reveal herd patterns and popular gath-
ering places. Knowledge about the animal location will give the conservation
worker valuable information about where to take anti-poaching measures. The
second task, counting animals, will give abundance data over time, coupled to
detection regions. This data gives the conservator a sense of the health of the
animal population, and where and how many animals disappear, which warrants
further investigation. The pipeline for the two evaluation tasks is visualized in
Figure 2.
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(a) (b) (c)

Fig. 3. Recording the dataset. (a): the Pelican quadcoptor drone used to record the
dataset (b): an example image from the train-set (c): an example image from the test-
set. Note the slanted vantage point and tiny animals.

3.1 Recorded dataset

Wildlife is notoriously hard to record in a controlled setting. To approximate a
realistic conservation task, we used a quadcopter drone to record a dataset of
domesticated farm animals. In figure 3(b,c) we show examples of the recordings.
While the exact type of animal (cow), the lack of camouflage in the open fields
and the presence of man-made structures is not common in the wild, this record-
ing nevertheless retains important properties that match a realistic conservation
scenario. Such realistic properties include the use of a quadcopter drone which
is often used in the wild because of its maneuverable and its ability to take
off from dense areas. Moreover, this type of drone gives us the opportunity to
record under a wide variation of positions, heights, and orientations of the cam-
era. Therefore, the recording setup matches closely as experienced in the wild.
Furthermore, the animals are smaller and of a similar size and build as many
conservation animals like the rhino or the elephant. The dataset provides an
excellent first opportunity to evaluate nature conservation drone algorithms.

The dataset was recorded by the Ascending Technologies Pelican (quad-
copter) with a mounted GoPro HERO 3: Black Edition action camera. In Fig-
ure 3(a) we show the drone in action. We manufactured a 3D printed custom-
made mount to attach the camera to the drone. The mount is filled with foam
to counter vibration of the camera during flight. The camera recorded videos
at a quality of 1080p (1920 x 1080 pixels) having a medium field of view (55◦

vertical and 94.4◦ horizontal) with 60 frames per second.

We performed two separate flights to obtain a set for training and a disjoint
set for testing. We manually annotated all animals in the dataset with vatic [37].
We removed large portions of the videos that do not contain any animals, which
resulted in 6 videos obtained from the two seperate flights. We use the first 4
videos from the first flight for training, and the latter 2 videos from the second
flight for testing. In total there are 12,673 frames in the training set and 5,683
frames in the test set. There are 30 unique animals present in the dataset. In
figure 4 we visualize the appearance and disappearance of animals during the
flight.
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Fig. 4. Number of animals per frame in each video, the green line shows the number
of unique animals per frame, the blue line the cumulative total. The 2 left columns
represent the training videos, the right column the test videos.

4 Object detection methods suitable for drones

4.1 Deformable part-based model

The deformable part-based model (DPM) of Felzenszwalb et al. [11] is a popular
and successful object detection instantiation of the pictorial structure represen-
tation [12] where an object is modeled as a flexible constellation of parts. In
addition to the gray-valued DPM, we also evaluate the color-DPM [19], where
color information is added to the features.

In the DPM [11], an object consists of a collection of parts connected in a
star-structure to a coarse root node. The parts and root node are represented by
HOG features and the quality of a star model is the score of the root features at
a given location plus the sum of the maximum over the part placements minus
a deformation cost based on the deviation of the parts from its ideal location.

The DPM is trained on bounding box annotations around the whole object;
where object-part locations are not labeled. To discriminatively train models
in such a semi-supervised setup a latent SVM is used. From labeled bounding
boxes {x1, x2, . . . , xn} where each box has a class label yi being either +1 or
−1 a latent SVM allows training when the part-locations are unknown. A latent
SVM scores an example x as

fβ(x) = max
z∈Z(x)

β · Φ(x, z), (1)

where Φ(x, z) is a feature vector and the set Z(x) has all possible latent vari-
ables (object configurations) and β is a vector of model parameters trained by



8 J. van Gemert, C. Verschoor, P. Mettes, K. Epema, L.P. Koh and S. Wich.

minimizing the SVM hinge loss

L(β) =
1

2
||β||2 + C

n∑
i=1

max(0, 1− yifβ(xi)), (2)

where C is the regularization parameter. See [11] for details.
A significant speed-up for the DPM can be obtained by a part-based cas-

cade [10]. This cascade is based on an ordering of the parts hypotheses and
prunes low scoring hypotheses, allowing the bulk of the computation time to
be spent on promising candidates. Besides the cascade, another speed-up can
be obtained by a hierarchical coarse-to-fine feature matching approach [27]. The
speed-up is based on the observation that the computational cost of the DPM is
dominated by the cost of matching each part to the image. The number of part
matches can be significantly reduced by using a coarse-to-fine inference strat-
egy. The combination of the cascade and the coarse-to-fine matching yields a
speed-up of one up to two orders of magnitude resulting in detection rates of 0.2
sec/image [27]. Such speeds are acceptable for nature conservation applications
on low-cost drone hardware.

4.2 Exemplar SVM

The ensemble of exemplar SVM object detection approach by Malisiewicz et al.
[25] trains a parametric SVM for each positive exemplar in the dataset. This
reaps the benefits of a non-parametric nearest neighbor search with training a
parametric model. The parametric SVM can effectively deal with negative sam-
ples whereas the non-parametric approach retains the link between positively
labeled training exemplars which allows knowledge transfer such as pose, geom-
etry or layout from an exemplar to a new object. This approach is conceptually
simple and yields good performance.

An exemplar SVM aims to separate each training example xE from other
examples in the set NE that do not containing the object class by learning a
weight vector wE by optimizing

||w||2 + C1h(wTxE + b) + C2

∑
x∈NE

h(−wTx− b), (3)

where h(x) = max(0, 1 − x) is the hinge loss and C1 and C2 are regulariza-
tion parameters. Each individual exemplar SVM is trained on a unique set of
negative examples which makes the output scores of the SVM’s not necessarily
comparable. To calibrate each SVM, a sigmoid function is fitted on hold-out
data, resulting in comparable SVM output between 0 and 1. All exemplar mod-
els are applied on a test image by means of a sliding window, where exemplar
co-occurences are used to obtain a detection.

To speed-up exemplar SVMs, Li et al. [23] use each exemplar as a weak clas-
sifier in a boosting approach. Boosting builds a strong classifier with a linear
combination of weak classifiers. These weak classifiers are iteratively selected
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to optimize the mis-classification rate. The iterative approach of boosting per-
forms feature selection, using only the best T weak classifiers. Feature selection
drastically reduces the number of used exemplars where [23] need only 500 exem-
plars for state of the art performance. In addition to the feature selection, Li et
al. [23] propose efficient feature-sharing across image pyramid scales resulting in
a detection speed of 0.9 sec/image, which is similarly acceptable for on a drone.

5 Animal Counting

For counting animals, the algorithm needs to keep track of each unique animal
to make sure a single animal is only counted once. This is a challenging task
for several reasons. The animal detection algorithm may fail missing the animal
completely or only in some frames in a video. It is also possible that the detection
algorithm detects an animal where there is none which will inflate the amount of
counted animals. Furthermore, because of the maneuverability of drone and pos-
sible pre-programmed flying paths, the same animal may appear and disappear
from the drone camera completely.

The detection algorithms process every frame. To determine if two detections
in subsequent frames belong to the same unique animal, the object detections
have to be stitched together over time. We aim to track detections over multiple
frames, even when one or a few detections are is missing. Thus, instead of basing
our method on detection tracking which may be noisy, we track salient points
which are more stable. For point tracking we use the KLT tracker [24] which uses
optical flow to track sparse interest points for L frames, where L is a parameter.
To determine whether two subsequent detection bounding boxes A and B belong
to the same unique animal we use the intersection over union measure A∩B

A∪B > 0.5
of the set of point tracks through A and through B [7].

Note that animal counting is different from a spatio-temporal localization
task, as e.g. proposed in [30, 17]. In a localization task the objective is to carefully
and completely identify what, when and where each object is in a video. In animal
counting, the exact position is not as relevant to the conservation worker since
she is interested in how many unique animals are correctly found.

6 Experiments

6.1 Experiment 1: Evaluating proposal quality

Object proposals significantly reduce the object detection search space by locat-
ing a modest collection of bounding boxes that with a high likelihood contain any
type of object. We focus on the selective search object proposal algorithm of Ui-
jlings et al. [31]because of its high-quality proposals. Selective search generates
object proposals from an initial set of super-pixels obtained through an over-
segmentation and merges super-pixels using a range of color, shape and other
super-pixel similarity measures. We evaluate both the fast and quality settings
of selective search [31].
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Setting ABO Recall Proposals / frame Time / frame

Fast 0.635 0.873 ca. 18,369 ca. 31 sec.
Quality 0.740 0.976 ca. 64,547 ca. 140 sec.

Table 1. Statistics of object proposals on the drone dataset. Overlap between proposals
A and ground-truth boxes B is measured as A∩B

A∪B
. ABO (Average Best Overlap) is the

best overlapping proposal per frame, averaged over all frames. Recall is measured as
the fraction of ground truth boxes that have an overlap greater than 0.5.

In Table 1 we show an overview of the results achieved on a set of sampled
video frames. As can clearly be seen in the Table above, the average best overlap
scores and recall scores yielded on the dataset of this work do not meet the results
reported in [31]. For the fast setting of selective search, only 87% of the cows
can be found in the set of proposals, while the average best overlap (ABO) is
a mere 63.5%. In contrast, on the Pascal VOC 2007, the same setting yields a
mean ABO of 80.4%, while nearly all the objects can be found in the proposals.
Similarly, the quality setting only yields an average best overlap of 74%. Besides
a low detection and overlap rate, there is also a strong increase in the number of
generated object proposals and the proposal generation time per frame. This is
best shown for the quality setting, where it takes nearly two and a half minutes
per frame to generate proposals resulting in more than 64,000 proposals.

As we are interested in lightweight solutions for drone imagery, the evaluation
time of the selective search algorithm poses serious practical problems. Not only
will it take at least 30 seconds to generate a set of proposals with an acceptable
recall rate, after that, features have to be extracted and a classifier applied on
tens of thousands of proposals. Thus, the proposals do not significantly reduce
the search time and we conclude that object proposal-based detection systems
are from a computational standpoint not suited for the problem at hand.

6.2 Experiment 2: Animal detection

For the second experiment, the three high-speed object detection methods: DPM,
color-DPM and exemplar SVM are evaluated on our dataset. In order to gener-
ate a final model for a specific object class, all three methods use a hard negative
mining procedure. As such, a diverse set of negatives is required. To meet this
requirement, the set-up of the Pascal VOC challenge is mimicked. More specifi-
cally, the images of the cow class in the Pascal VOC are replaced by randomly
sampled images from the train and test video for resp. the train and test set. In
this setup, the train images from the other 19 classes can be used for discrimina-
tive learning. These classes include people, animals (cats, dogs, horses, sheep),
vehicles (aeroplanes, bikes, boats, busses, cars, motorbikes, trains), and indoor
objects (bottles, chairs, dining tables, potted plants, sofa’s, tv’s).

The trained models are applied to all frames in the test set, containing a total
of 1,227 ground truth bounding boxes. The result of this evaluation is a list of
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Fig. 5. Precision-recall curves for all three methods on the test images of the dataset.

bounding box detections, ranked by their respective confidence value which is
evaluated by precision and recall values.

In Figure 5, the precision-recall curves are shown for exemplar SVM, DPM,
and color-DPM. As can be deduced from the Figure, exemplar SVM significantly
outperforms both other methods in terms of precision (after a recall of 0.15) and
recall. This holds similarly for the Average Precision scores; 0.66 for exemplar
SVM, compared to 0.30 for DPM and 0.26 for color-DPM. These results are
surprising when compared with reported results on standard object detection
datasets. For example, Khan et al. [19] indicate that color-DPM is prefered
over standard (grayscale) DPM, while DPM in turn reports better results than
exemplar SVM [11].

A particular interesting aspect of the curves in Figure 5 is that both DPM
models reach a final recall of roughly 0.4, while exemplar SVM reaches a final
recall of roughly 0.72. A primary reason for this discrepancy lies in the total
number of detected objects for the methods. While there are in total 1,227
positive instances of the object to be discovered, DPM detects 2,673 and color-
DPM detects 4,156 bounding boxes. Exemplar SVM on the other hand, report
a total of 40,654 bounding boxes. With such a high number of object detections,
the final recall is bound to be higher.

The high number of object detections do however not explain the high pre-
cision of Exemplar SVM. The answer to this is two-fold. First, the use of a joint
global and part-based model in DPM does not work favorably given the small
scale of the animals in the drone images. As shown in Figure 6, individual ani-
mals are generally tiny, due to the high altitude of the drones. When an animal
is then visible e.g. in a window of 25 by 25 pixels, there is not enough gradient
information for reliable global and part-based models. A second reason for the
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Fig. 6. Examples of detected bounding boxes for a test frame. The top row show the
10 highest ranked detections per method, while the bottom row shows all positive
detections.

high results of exemplar SVM lies in the dataset. Since this evaluation is aimed
at detecting cows, there is limited discrepancy between the instances to discover
during training and testing. As we are in a practical scenario also interested in
a limited range of wildlife animals, the use of animal exemplars for detection is
beneficial.

In Figure 6, qualitative detection results are shown for a single test frame.
For the top ranked detections (top row), the results of all methods look rather
promising. When looking at all the positively detected bounding boxes however,
the results become cluttered. For exemplar SVM, it is even unknown what the
promising locations of the cows are. Nevertheless, the methods are capable of
highly ranking the correct image locations, but also tend to fire on high con-
trast corner areas (such as the white lines or humans in Figure 6) and cluttered
locations. Similar to the results of the first experiment, the results of this exper-
iment indicate that results yielded on human-scale images are not be directly
applicable to drone imagery.

6.3 Experiment 3: Animal Counting

In the third experiment we evaluate the quality of animal counting based on
frame-based detections in combination with point tracks obtained by a KLT
tracker [24]. To avoid counting the same animal multiple times for several frames,
the frame-based object detections are either stitched to an existing group of de-
tections or are seen as a new unique group of detections; where ideally each group
of detections represents a single unique animal. The KLT algorithm generates
point tracks of length L and we chose the values L ∈ {5, 10, 15, 20} as a range
of stable values.
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Fig. 7. Precision-recall curves for different point track sizes on the ground truth where
bounding boxes are sampled every 5 frames from the annotations.

Counting is evaluated by precision-recall curves, albeit with special consid-
erations. The recall is defined as all unique animals. The precision is computed
based on the correctness of a stitched group of detections. For counting, we con-
sider a count correct only if it adheres to these three strict rules: i) there are no
multiple animals within a single track; ii) all individual detections are animals
and iii) the found animal is unique and has not been counted before. These strict
criteria allow us to draw a precision-recall curve where we sort stitched frames
based on the number of aggregated frames.

We first evaluate the quality of the tracking algorithm. To this end, we simu-
late a perfect detector by sampling ground truth boxes for every 5 frames in the
video. The average precision is 0.216 and in Figure 7 we show the precision-recall
curve. A track-length of L = 15 is performing best, although the difference is
minimal.

Next, we evaluate the counting results using the automatically generated
bounding box detection, using an empirically set threshold of -0.8 to discard
false positives. In Figure 8 we show the corresponding precision-recall curves.
Compared to the results of Figure 7, the curves are lower, while also not all
animals are found. Similarly, the average precision score is lower, with a score of
0.193.

Based on the above yielded results, animal counting turns out to be a chal-
lenging problem. Even on ground truth detections, there is plenty of room for
improvement, which we will focus on in future research.
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Fig. 8. Precision-recall curves for different point track sizes on the DPM detections
with a threshold of -0.8.

7 Conclusion

We investigate if current automatic object detection methods as designed for
human-centered objects are suitable for nature conservation on a drone, where
objects are typically much smaller and observed from above. We define two
task: i) animal detection and ii) animal counting. These tasks are important for
monitoring animal distribution and animal abundance as typically required for
successful nature conservation. To evaluate these tasks, we manually recorded
and annotated a new dataset with a quad-copter drone. The animal detection
task is benchmarked with three light-weight object detection algorithms that
are suitable for on-board implementation since their potential detection speed
is less than 1 second per image. We base the animal counting task on the detec-
tion task for which we define a suitable evaluation protocol. Results on counting
show that this task is difficult, and as such an interesting research question. Re-
sults for object detection show that the performance of object detection meth-
ods as evaluated on images of human objects does not directly translate to
drone imagery. According to the literature, the color-DPM should outperform
the standard DPM, which in turn should outperform exemplar SVM. Our re-
sults are the exact opposite of this ordering. Nevertheless, detection results are
promising, showing that automatic animal conservation with drones is a fruitful
combination of biology, aircraft engineering and computer vision.
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