9 research outputs found
Outpatient treatment with AZD7442 (tixagevimab/cilgavimab) prevented Covid-19 hospitalizations over 6 months and reduced symptom progression in the TACKLE randomized trial
Introduction
We assessed effects of AZD7442 (tixagevimab/cilgavimab) on deaths from any cause or hospitalizations due to coronavirus disease 2019 (COVID-19) and symptom severity and longer-term safety in the TACKLE adult outpatient treatment study.
Methods
Participants received 600 mg AZD7442 (n = 452) or placebo (n = 451) ≤ 7 days of COVID-19 symptom onset.
Results
Death from any cause or hospitalization for COVID-19 complications or sequelae through day 169 (key secondary endpoint) occurred in 20/399 (5.0%) participants receiving AZD7442 versus 40/407 (9.8%) receiving placebo [relative risk reduction (RRR) 49.1%; 95% confidence interval (CI) 14.5, 69.7; p = 0.009] or 50.7% (95% CI 17.5, 70.5; p = 0.006) after excluding participants unblinded before day 169 for consideration of vaccination). AZD7442 reduced progression of COVID-19 symptoms versus placebo through to day 29 (RRR 12.5%; 95% CI 0.5, 23.0) and improved most symptoms within 1–2 weeks. Over median safety follow-up of 170 days, adverse events occurred in 174 (38.5%) and 196 (43.5%) participants receiving AZD7442 or placebo, respectively. Cardiac serious adverse events occurred in two (0.4%) and three (0.7%) participants receiving AZD7442 or placebo, respectively.
Conclusions
AZD7442 was well tolerated and reduced hospitalization and mortality through 6 months, and symptom burden through 29 days, in outpatients with mild-to-moderate COVID-19.
Clinical Trial Registration
Clinicaltrials.gov, NCT04723394. (https://beta.clinicaltrials.gov/study/NCT04723394)
Outpatient Treatment with AZD7442 (Tixagevimab/Cilgavimab) Prevented COVID-19 Hospitalizations over 6 Months and Reduced Symptom Progression in the TACKLE Randomized Trial
INTRODUCTION: We assessed effects of AZD7442 (tixagevimab/cilgavimab) on deaths from any cause or hospitalizations due to coronavirus disease 2019 (COVID-19) and symptom severity and longer-term safety in the TACKLE adult outpatient treatment study. METHODS: Participants received 600 mg AZD7442 (n = 452) or placebo (n = 451) ≤ 7 days of COVID-19 symptom onset. RESULTS: Death from any cause or hospitalization for COVID-19 complications or sequelae through day 169 (key secondary endpoint) occurred in 20/399 (5.0%) participants receiving AZD7442 versus 40/407 (9.8%) receiving placebo [relative risk reduction (RRR) 49.1%; 95% confidence interval (CI) 14.5, 69.7; p = 0.009] or 50.7% (95% CI 17.5, 70.5; p = 0.006) after excluding participants unblinded before day 169 for consideration of vaccination). AZD7442 reduced progression of COVID-19 symptoms versus placebo through to day 29 (RRR 12.5%; 95% CI 0.5, 23.0) and improved most symptoms within 1-2 weeks. Over median safety follow-up of 170 days, adverse events occurred in 174 (38.5%) and 196 (43.5%) participants receiving AZD7442 or placebo, respectively. Cardiac serious adverse events occurred in two (0.4%) and three (0.7%) participants receiving AZD7442 or placebo, respectively. CONCLUSIONS: AZD7442 was well tolerated and reduced hospitalization and mortality through 6 months, and symptom burden through 29 days, in outpatients with mild-to-moderate COVID-19. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov, NCT04723394. ( https://beta. CLINICALTRIALS: gov/study/NCT04723394 )
Response to comment on 'The clinical pharmacology of tafenoquine in the radical cure of Plasmodium vivax malaria: an individual patient data meta-analysis'
In our recent paper on the clinical pharmacology of tafenoquine (Watson et al., 2022), we used all available individual patient pharmacometric data from the tafenoquine pre-registration clinical efficacy trials to characterise the determinants of anti-relapse efficacy in tropical vivax malaria. We concluded that the currently recommended dose of tafenoquine (300 mg in adults, average dose of 5 mg/kg) is insufficient for cure in all adults, and a 50% increase to 450 mg (7.5 mg/kg) would halve the risk of vivax recurrence by four months. We recommended that clinical trials of higher doses should be carried out to assess their safety and tolerability. Sharma and colleagues at the pharmaceutical company GSK defend the currently recommended adult dose of 300 mg as the optimum balance between radical curative efficacy and haemolytic toxicity (Sharma et al., 2024). We contend that the relative haemolytic risks of the 300 mg and 450 mg doses have not been sufficiently well characterised to justify this opinion. In contrast, we provided evidence that the currently recommended 300 mg dose results in sub-maximal efficacy, and that prospective clinical trials of higher doses are warranted to assess their risks and benefits
The clinical pharmacology of tafenoquine in the radical cure of Plasmodium vivax malaria: An individual patient data meta-analysis
Tafenoquine is a newly licensed antimalarial drug for the radical cure of Plasmodium vivax malaria. The mechanism of action and optimal dosing are uncertain. We pooled individual data from 1102 patients and 72 healthy volunteers studied in the pre-registration trials. We show that tafenoquine dose is the primary determinant of efficacy. Under an Emax model, we estimate the currently recommended 300 mg dose in a 60 kg adult (5 mg/kg) results in 70% of the maximal obtainable hypnozoiticidal effect. Increasing the dose to 7.5 mg/kg (i.e. 450 mg) would result in 90% reduction in the risk of P. vivax recurrence. After adjustment for dose, the tafenoquine terminal elimination half-life, and day 7 methaemoglobin concentration, but not the parent compound exposure, were also associated with recurrence. These results suggest that the production of oxidative metabolites is central to tafenoquine's hypnozoiticidal efficacy. Clinical trials of higher tafenoquine doses are needed to characterise their efficacy, safety and tolerability
Pharmacogenetic assessment of tafenoquine efficacy in patients with Plasmodium vivax malaria
Plasmodium vivax has the largest geographic range of human malaria species and is challenging to manage and eradicate due to its ability to establish a dormant liver stage, the hypnozoite, which can reactivate leading to relapse. Until recently, the only treatment approved to kill hypnozoites was the 8-aminoquinoline, primaquine, requiring daily treatment for 14 days. Tafenoquine, an 8-aminoquinoline single-dose treatment with activity against P. vivax hypnozoites, has recently been approved by the US Food and Drug Administration and Australian Therapeutic Goods Administration for the radical cure of P. vivax malaria in patients 16 years and older. We conducted an exploratory pharmacogenetic analysis (GSK Study 208099) to assess the role of host genome-wide variation on tafenoquine efficacy in patients with P. vivax malaria using data from three GSK clinical trials, GATHER and DETECTIVE Part 1 and Part 2. Recurrence-free efficacy at 6 and 4 months and time to recurrence up to 6 months postdosing were analyzed in 438 P. vivax malaria patients treated with tafenoquine. Among the approximately 10.6 million host genetic variants analyzed, two signals reached genome-wide significance (P value ≤ 5 × 10−8). rs62103056, and variants in a chromosome 12 intergenic region, were associated with recurrence-free efficacy at 6 and 4 months, respectively. Neither of the signals has an obvious biological rationale and would need replication in an independent population. This is the first genome-wide association study to evaluate genetic influence on response to tafenoquine in P. vivax malaria
Pharmacogenetic assessment of tafenoquine efficacy in patients with Plasmodium vivax malaria
Plasmodium vivax has the largest geographic range of human malaria species and is challenging to manage and eradicate due to its ability to establish a dormant liver stage, the hypnozoite, which can reactivate leading to relapse. Until recently, the only treatment approved to kill hypnozoites was the 8-aminoquinoline, primaquine, requiring daily treatment for 14 days. Tafenoquine, an 8-aminoquinoline single-dose treatment with activity against P. vivax hypnozoites, has recently been approved by the US Food and Drug Administration and Australian Therapeutic Goods Administration for the radical cure of P. vivax malaria in patients 16 years and older. We conducted an exploratory pharmacogenetic analysis (GSK Study 208099) to assess the role of host genome-wide variation on tafenoquine efficacy in patients with P. vivax malaria using data from three GSK clinical trials, GATHER and DETECTIVE Part 1 and Part 2. Recurrence-free efficacy at 6 and 4 months and time to recurrence up to 6 months postdosing were analyzed in 438 P. vivax malaria patients treated with tafenoquine. Among the approximately 10.6 million host genetic variants analyzed, two signals reached genome-wide significance (P value ≤ 5 × 10−8). rs62103056, and variants in a chromosome 12 intergenic region, were associated with recurrence-free efficacy at 6 and 4 months, respectively. Neither of the signals has an obvious biological rationale and would need replication in an independent population. This is the first genome-wide association study to evaluate genetic influence on response to tafenoquine in P. vivax malaria
Recommended from our members
Lineage-informative microhaplotypes for recurrence classification and spatio-temporal surveillance of Plasmodium vivax malaria parasites.
Acknowledgements: The study was supported by the National Health and Medical Research Council of Australia (APP2001083 supporting S.A. and S.V.S.), the Wellcome Trust (200909 and ICRG GR071614MA Senior Fellowships in Clinical Science to R.N.P., 206194/Z17/Z supporting J.C.R. and S.V.S.) the National Institutes of Health (R01AI137154 to J.C.R.) and the Bill & Melinda Gates Foundation (INV-043618 supporting S.A. and R.N.P.).The whole genome sequencing component of the study was supported by the Medical Research Council and UK Department for International Development (award number M006212 to DK) and the Wellcome Trust (award numbers 206194 and 204911 to D.K.). The IMPROV clinical trial was supported by the Bill & Melinda Gates Foundation (OPP1054404 awarded to R.N.P.). We thank the patients who contributed their samples to the study, and the health workers and field teams who assisted with the sample collections. Genome sequencing was undertaken by the Wellcome Sanger Institute, and we thank the staff of the Wellcome Sanger Institute Sample Logistics, Sequencing, and Informatics facilities for their contribution.Funder: Medical Research Council and UK Department for International Development (award number M00621)Funder: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)Challenges in classifying recurrent Plasmodium vivax infections constrain surveillance of antimalarial efficacy and transmission. Recurrent infections may arise from activation of dormant liver stages (relapse), blood-stage treatment failure (recrudescence) or reinfection. Molecular inference of familial relatedness (identity-by-descent or IBD) can help resolve the probable origin of recurrences. As whole genome sequencing of P. vivax remains challenging, targeted genotyping methods are needed for scalability. We describe a P. vivax marker discovery framework to identify and select panels of microhaplotypes (multi-allelic markers within small, amplifiable segments of the genome) that can accurately capture IBD. We evaluate panels of 50-250 microhaplotypes discovered in a global set of 615 P. vivax genomes. A candidate global 100-microhaplotype panel exhibits high marker diversity in the Asia-Pacific, Latin America and horn of Africa (median HE = 0.70-0.81) and identifies 89% of the polyclonal infections detected with genome-wide datasets. Data simulations reveal lower error in estimating pairwise IBD using microhaplotypes relative to traditional biallelic SNP barcodes. The candidate global panel also exhibits high accuracy in predicting geographic origin and captures local infection outbreak and bottlenecking events. Our framework is open-source enabling customised microhaplotype discovery and selection, with potential for porting to other species or data resources