76 research outputs found

    Opposite physiological and pathological mTORC1-mediated roles of the CB1 receptor in regulating renal tubular function.

    Get PDF
    Activation of the cannabinoid-1 receptor (CB1R) and the mammalian target of rapamycin complex 1 (mTORC1) in the renal proximal tubular cells (RPTCs) contributes to the development of diabetic kidney disease (DKD). However, the CB1R/mTORC1 signaling axis in the kidney has not been described yet. We show here that hyperglycemia-induced endocannabinoid/CB1R stimulation increased mTORC1 activity, enhancing the transcription of the facilitative glucose transporter 2 (GLUT2) and leading to the development of DKD in mice; this effect was ameliorated by specific RPTCs ablation of GLUT2. Conversely, CB1R maintained the normal activity of mTORC1 by preventing the cellular excess of amino acids during normoglycemia. Our findings highlight a novel molecular mechanism by which the activation of mTORC1 in RPTCs is tightly controlled by CB1R, either by enhancing the reabsorption of glucose and inducing kidney dysfunction in diabetes or by preventing amino acid uptake and maintaining normal kidney function in healthy conditions

    Screening of Peptide Libraries against Protective Antigen of Bacillus anthracis in a Disposable Microfluidic Cartridge

    Get PDF
    Bacterial surface peptide display has gained popularity as a method of affinity reagent generation for a wide variety of applications ranging from drug discovery to pathogen detection. In order to isolate the bacterial clones that express peptides with high affinities to the target molecule, multiple rounds of manual magnetic activated cell sorting (MACS) followed by multiple rounds of fluorescence activated cell sorting (FACS) are conventionally used. Although such manual methods are effective, alternative means of library screening which improve the reproducibility, reduce the cost, reduce cross contamination, and minimize exposure to hazardous target materials are highly desired for practical application. Toward this end, we report the first semi-automated system demonstrating the potential for screening bacterially displayed peptides using disposable microfluidic cartridges. The Micro-Magnetic Separation platform (MMS) is capable of screening a bacterial library containing 3×1010 members in 15 minutes and requires minimal operator training. Using this system, we report the isolation of twenty-four distinct peptide ligands that bind to the protective antigen (PA) of Bacilus anthracis in three rounds of selection. A consensus motif WXCFTC was found using the MMS and was also found in one of the PA binders isolated by the conventional MACS/FACS approach. We compared MMS and MACS rare cell recovery over cell populations ranging from 0.1% to 0.0000001% and found that both magnetic sorting methods could recover cells down to 0.0000001% initial cell population, with the MMS having overall lower standard deviation of cell recovery. We believe the MMS system offers a compelling approach towards highly efficient, semi-automated screening of molecular libraries that is at least equal to manual magnetic sorting methods and produced, for the first time, 15-mer peptide binders to PA protein that exhibit better affinity and specificity than peptides isolated using conventional MACS/FACS

    Platinum Nanoparticle Decorated SiO2 Microfibers as Catalysts for Micro Unmanned Underwater Vehicle Propulsion

    Get PDF
    Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H2O2) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report, a thermal/electrical insulator, silicon oxide (SiO2) microfibers, is used as a support for platinum nanoparticle (PtNP) catalysts. The mercapto-silanization of the SiO2 microfibers enables strong covalent attachment with PtNPs, and the resultant PtNP–SiO2 fibers act as a robust, high surface area catalyst for H2O2 decomposition. The PtNP–SiO2 catalysts are fitted inside a micro UUV reaction chamber for vehicular propulsion; the catalysts can propel a micro UUV for 5.9 m at a velocity of 1.18 m/s with 50 mL of 50% (w/w) H2O2. The concomitance of facile fabrication, economic and scalable processing, and high performance—including a reduction in H2O2 decomposition activation energy of 40–50% over conventional material catalysts—paves the way for using these nanostructured microfibers in modern, small-scale underwater vehicle propulsion systems

    Mapping the Metabolic Reprogramming Induced by Sodium-Glucose Cotransporter 2 Inhibition

    Get PDF
    Diabetes is associated with increased risk for kidney disease, heart failure, and mortality. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) prevent these adverse outcomes; however, the mechanisms involved are not clear. We generated a roadmap of the metabolic alterations that occur in different organs in diabetes and in response to SGLT2i. In vivo metabolic labeling with 13C-glucose in normoglycemic and diabetic mice treated with or without dapagliflozin, followed by metabolomics and metabolic flux analyses, showed that, in diabetes, glycolysis and glucose oxidation are impaired in the kidney, liver, and heart. Treatment with dapagliflozin failed to rescue glycolysis. SGLT2 inhibition increased glucose oxidation in all organs; in the kidney, this was associated with modulation of the redox state. Diabetes was associated with altered methionine cycle metabolism, evident by decreased betaine and methionine levels, whereas treatment with SGLT2i increased hepatic betaine along with decreased homocysteine levels. mTORC1 activity was inhibited by SGLT2i along with stimulation of AMPK in both normoglycemic and diabetic animals, possibly explaining the protective effects against kidney, liver, and heart diseases. Collectively, our findings suggest that SGLT2i induces metabolic reprogramming orchestrated by AMPK-mTORC1 signaling with common and distinct effects in various tissues, with implications for diabetes and aging

    Stamped multilayer graphene laminates for disposable in-field electrodes: application to electrochemical sensing of hydrogen peroxide and glucose

    Get PDF
    A multi-step approach is described for the fabrication of multi-layer graphene-based electrodes without the need for ink binders or post-print annealing. Graphite and nanoplatelet graphene were chemically exfoliated using a modified Hummers’ method and the dried material was thermally expanded. Expanded materials were used in a 3D printed mold and stamp to create laminate electrodes on various substrates. The laminates were examined for potential sensing applications using model systems of peroxide (H2O2) and enzymatic glucose detection. Within the context of these two assay systems, platinum nanoparticle electrodeposition and oxygen plasma treatment were examined as methods for improving sensitivity. Electrodes made from both materials displayed excellent H2O2sensing capability compared to screen-printed carbon electrodes. Laminates made from expanded graphite and treated with platinum, detected H2O2 at a working potential of 0.3 V (vs. Ag/AgCl [0.1 M KCl]) with a 1.91 μM detection limit and sensitivity of 64 nA·μM−1·cm−2. Electrodes made from platinum treated nanoplatelet graphene had a H2O2 detection limit of 1.98 μM (at 0.3 V), and a sensitivity of 16.5 nA·μM−1·cm−2. Both types of laminate electrodes were also tested as glucose sensors via immobilization of the enzyme glucose oxidase. The expanded nanographene material exhibited a wide analytical range for glucose (3.7 μM to 9.9 mM) and a detection limit of 1.2 μM. The sensing range of laminates made from expanded graphite was slightly reduced (9.8 μM to 9.9 mM) and the detection limit for glucose was higher (18.5 μM). When tested on flexible substrates, the expanded graphite laminates demonstrated excellent adhesion and durability during testing. These properties make the electrodes adaptable to a variety of tests for field-based or wearable sensing applications

    Platinum Nanoparticle Decorated SiO 2 Microfibers as Catalysts for Micro Unmanned Underwater Vehicle Propulsion

    Get PDF
    Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H2O2) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report a thermal/electrical insulator, silicon oxide (SiO2) microfibers, are used as a support for platinum nanoparticle (PtNP) catalysts. The mercapto-silanization of the SiO2 microfibers enables strong covalent attachment with PtNPs and the resultant PtNP-SiO2 fibers act as a robust, high surface area catalyst for H2O2 decomposition. The PtNP-SiO2 catalysts are fitted inside a micro UUV reaction chamber for vehicular propulsion; the catalysts can propel a micro UUV for 5.9 meters at a velocity of 1.18 m/s with 50 mL of 50% (w/w) H2O2.The concomitance of facile fabrication, economic and scalable processing, and high performance —including a reduction in H2O2 decomposition activation energy of 40-50% over conventional material catalysts—paves the way for using these nanostructured microfibers in modern, small-scale underwater vehicle propulsion systems

    Bimodal Gold Nanoparticle Therapeutics for Manipulating Exogenous and Endogenous Protein Levels in Mammalian Cells

    No full text
    A new advance in cell transfection protocol using a bimodal nanoparticle agent to selectively manipulate protein expression levels within mammalian cells is demonstrated. The nanoparticle based transfection approach functions by controlled release of gene regulatory elements from a 6 nm AuNP (gold nanoparticle) surface. The endosomal release of the regulatory elements from the nanoparticle surface results in endogenous protein knockdown simultaneously with exogenous protein expression for the first 48 h. The use of fluorescent proteins as the endogenous and exogenous signals for protein expression enables the efficiency of codelivery of siRNA (small interfering RNA) for GFP (green fluorescent protein) knockdown and a dsRed-express linearized plasmid for induction to be optically analyzed in CRL-2794, a human kidney cell line expressing an unstable green fluorescent protein. Delivery of the bimodal nanoparticle in cationic liposomes results in 20% GFP knockdown within 24 h of delivery and continues exhibiting knockdown for up to 48 h for the bimodal agent. Simultaneous dsRed expression is observed to initiate within the same time frame with expression levels reaching 34% after 25 days although cells have divided approximately 20 times, implying daughter cell transfection has occurred. Fluorescence cell sorting results in a stable colony, as demonstrated by Western blot analysis. The simultaneous delivery of siRNA and linearized plasmid DNA on the surface of a single nanocrystal provides a unique method for definitive genetic control within a single cell and leads to a very efficient cell transfection protocol

    Upregulation of Mitochondrial Content in Cytochrome c Oxidase Deficient Fibroblasts.

    No full text
    Cytochrome-c-oxidase (COX) deficiency is a frequent cause of mitochondrial disease and is associated with a wide spectrum of clinical phenotypes. We studied mitochondrial function and biogenesis in fibroblasts derived from the Cohen (CDs) rat, an animal model of COX deficiency. COX activity in CDs-fibroblasts was 50% reduced compared to control rat fibroblasts (P<0.01). ROS-production in CDs fibroblasts increased, along with marked mitochondrial fragmentation and decreased mitochondrial membrane-potential, indicating mitochondrial dysfunction. Surprisingly, cellular ATP content, oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) were unchanged. To clarify the discrepancy between mitochondrial dysfunction and ATP production, we studied mitochondrial biogenesis and turnover. The content of mitochondria was higher in CDs-fibroblasts. Consistently, AMPK activity and the expression of NRF1-target genes, NRF2 and PGC1-α that mediate mitochondrial biogenesis were increased (P<0.01 vs control fibroblast). In CDs-fibrobalsts, the number of autophagosomes (LC3+ puncta) containing mitochondria in CDs fibroblasts was similar to that in control fibroblasts, suggesting that mitophagy was intact. Altogether, our findings demonstrate that mitochondrial dysfunction and oxidative stress are associated with an increase in mitochondrial biogenesis, resulting in preservation of ATP generation
    corecore