27 research outputs found

    Utility of the Hebb–Williams maze paradigm for translational research in Fragile X syndrome: A direct comparison of mice and humans

    Get PDF
    To generate meaningful information, translational research must employ paradigms that allow extrapolation from animal models to humans. However, few studies have evaluated translational paradigms on the basis of defined validation criteria. We outline three criteria for validating translational paradigms. We then evaluate the Hebb–Williams maze paradigm (Hebb and Williams, 1946; Rabinovitch and Rosvold, 1951) on the basis of these criteria using Fragile X syndrome (FXS) as model disease. We focuse

    Plasmodium falciparum Nucleosomes Exhibit Reduced Stability and Lost Sequence Dependent Nucleosome Positioning

    Get PDF
    The packaging and organization of genomic DNA into chromatin represents an additional regulatory layer of gene expression, with specific nucleosome positions that restrict the accessibility of regulatory DNA elements. The mechanisms that position nucleosomes in vivo are thought to depend on the biophysical properties of the histones, sequence patterns, like phased di-nucleotide repeats and the architecture of the histone octamer that folds DNA in 1.65 tight turns. Comparative studies of human and P. falciparum histones reveal that the latter have a strongly reduced ability to recognize internal sequence dependent nucleosome positioning signals. In contrast, the nucleosomes are positioned by AT-repeat sequences flanking nucleosomes in vivo and in vitro. Further, the strong sequence variations in the plasmodium histones, compared to other mammalian histones, do not present adaptations to its AT-rich genome. Human and parasite histones bind with higher affinity to GC-rich DNA and with lower affinity to AT-rich DNA. However, the plasmodium nucleosomes are overall less stable, with increased temperature induced mobility, decreased salt stability of the histones H2A and H2B and considerable reduced binding affinity to GC-rich DNA, as compared with the human nucleosomes. In addition, we show that plasmodium histone octamers form the shortest known nucleosome repeat length (155bp) in vitro and in vivo. Our data suggest that the biochemical properties of the parasite histones are distinct from the typical characteristics of other eukaryotic histones and these properties reflect the increased accessibility of the P. falciparum genome

    Innovations and changes in the ICD-11 classification of mental, behavioural and neurodevelopmental disorders

    Full text link
    Following approval of the ICD-11 by the World Health Assembly in May 2019, World Health Organization (WHO) member states will transition from the ICD-10 to the ICD-11, with reporting of health statistics based on the new system to begin on January 1, 2022. The WHO Department of Mental Health and Substance Abuse will publish Clinical Descriptions and Diagnostic Guidelines (CDDG) for ICD-11 Mental, Behavioural and Neurodevelopmental Disorders following ICD-11's approval. The development of the ICD-11 CDDG over the past decade, based on the principles of clinical utility and global applicability, has been the most broadly international, multilingual, multidisciplinary and participative revision process ever implemented for a classification of mental disorders. Innovations in the ICD-11 include the provision of consistent and systematically characterized information, the adoption of a lifespan approach, and culture-related guidance for each disorder. Dimensional approaches have been incorporated into the classification, particularly for personality disorders and primary psychotic disorders, in ways that are consistent with current evidence, are more compatible with recovery-based approaches, eliminate artificial comorbidity, and more effectively capture changes over time. Here we describe major changes to the structure of the ICD-11 classification of mental disorders as compared to the ICD-10, and the development of two new ICD-11 chapters relevant to mental health practice. We illustrate a set of new categories that have been added to the ICD-11 and present the rationale for their inclusion. Finally, we provide a description of the important changes that have been made in each ICD-11 disorder grouping. This information is intended to be useful for both clinicians and researchers in orienting themselves to the ICD-11 and in preparing for implementation in their own professional contexts

    The Classification of Anxiety and Fear-Related Disorders in the ICD-11

    No full text
    Anxiety disorders are highly prevalent worldwide and engender substantial economic costs and disability. The World Health Organization is currently developing the Eleventh Revision of the International Classification of Diseases and Related Health Problems (ICD-11), which represents the first opportunity to improve the validity, clinical utility, and global applicability of the classification in more than 25 years. This article describes changes in the organization and diagnostic guidelines for anxiety and fear-related disorders proposed by the ICD-11 Working Group on the Classification of Mood and Anxiety Disorders and the rationale and evidence base for the proposals. In ICD-11, anxiety and fear-related disorders that manifest across the lifespan are brought together under a new grouping, and are partly distinguished by their focus of apprehension. The focus of apprehension is the stimulus or situation that triggers the fear or anxiety and may be highly specific as in specific phobia or relate to a broader class of situations as in social anxiety disorder. The guidelines also clarify the relationship between panic disorder and agoraphobia and a qualifier is provided for panic attacks in the context of other disorders. A standardized format emphasizing essential features of anxiety disorders is intended to improve clinical utility. Guidelines will be further refined based on findings from two types of field studies: those using a case-controlled vignette methodology disseminated via the Internet to practitioners worldwide (http://gcp.network) and clinic-based field trials implemented globally at participating field study centers

    Utility of the Hebb–Williams Maze Paradigm for Translational Research in Fragile X Syndrome: A Direct Comparison of Mice and Humans

    No full text
    To generate meaningful information, translational research must employ paradigms that allow extrapolation from animal models to humans. However, few studies have evaluated translational paradigms on the basis of defined validation criteria. We outline three criteria for validating translational paradigms. We then evaluate the Hebb–Williams maze paradigm (Hebb and Williams, 1946; Rabinovitch and Rosvold, 1951) on the basis of these criteria using Fragile X syndrome (FXS) as model disease. We focused on this paradigm because it allows direct comparison of humans and animals on tasks that are behaviorally equivalent (criterion #1) and because it measures spatial information processing, a cognitive domain for which FXS individuals and mice show impairments as compared to controls (criterion #2). We directly compared the performance of affected humans and mice across different experimental conditions and measures of behavior to identify which conditions produce comparable patterns of results in both species. Species differences were negligible for Mazes 2, 4, and 5 irrespective of the presence of visual cues, suggesting that these mazes could be used to measure spatial learning in both species. With regards to performance on the first trial, which reflects visuo-spatial problem solving, Mazes 5 and 9 without visual cues produced the most consistent results. We conclude that the Hebb–Williams mazes paradigm has the potential to be utilized in translational research to measure comparable cognitive functions in FXS humans and animals (criterion #3)

    Innovations and changes in the ICD-11 classification of mental, behavioural and neurodevelopmental disorders

    No full text
    Following approval of the ICD-11 by the World Health Assembly in May 2019, World Health Organization (WHO) member states will transition from the ICD-10 to the ICD-11, with reporting of health statistics based on the new system to begin on January 1, 2022. The WHO Department of Mental Health and Substance Abuse will publish Clinical Descriptions and Diagnostic Guidelines (CDDG) for ICD-11 Mental, Behavioural and Neurodevelopmental Disorders following ICD-11's approval. The development of the ICD-11 CDDG over the past decade, based on the principles of clinical utility and global applicability, has been the most broadly international, multilingual, multidisciplinary and participative revision process ever implemented for a classification of mental disorders. Innovations in the ICD-11 include the provision of consistent and systematically characterized information, the adoption of a lifespan approach, and culture-related guidance for each disorder. Dimensional approaches have been incorporated into the classification, particularly for personality disorders and primary psychotic disorders, in ways that are consistent with current evidence, are more compatible with recovery-based approaches, eliminate artificial comorbidity, and more effectively capture changes over time. Here we describe major changes to the structure of the ICD-11 classification of mental disorders as compared to the ICD-10, and the development of two new ICD-11 chapters relevant to mental health practice. We illustrate a set of new categories that have been added to the ICD-11 and present the rationale for their inclusion. Finally, we provide a description of the important changes that have been made in each ICD-11 disorder grouping. This information is intended to be useful for both clinicians and researchers in orienting themselves to the ICD-11 and in preparing for implementation in their own professional contexts
    corecore