3,867 research outputs found

    Mott transitions in two-orbital Hubbard systems

    Full text link
    We investigate the Mott transitions in two-orbital Hubbard systems. Applying the dynamical mean field theory and the self-energy functional approach, we discuss the stability of itinerant quasi-particle states in each band. It is shown that separate Mott transitions occur at different Coulomb interaction strengths in general. On the other hand, if some special conditions are satisfied for the interactions, spin and orbital fluctuations are equally enhanced at low temperatures, resulting in a single Mott transition. The phase diagrams are obtained at zero and finite temperatures. We also address the effect of the hybridization between two orbitals, which induces the Kondo-like heavy fermion states in the intermediate orbital-selective Mott phase.Comment: 21 Pages, 17 Figures, to appear in Progress of Theoretical Physics (YKIS2004 Proceedings

    Zero-temperature Phase Diagram of Two Dimensional Hubbard Model

    Full text link
    We investigate the two-dimensional Hubbard model on the triangular lattice with anisotropic hopping integrals at half filling. By means of a self-energy functional approach, we discuss how stable the non-magnetic state is against magnetically ordered states in the system. We present the zero-temperature phase diagram, where the normal metallic state competes with magnetically ordered states with (Ï€,Ï€)(\pi, \pi) and (2Ï€/3,2Ï€/3)(2\pi/3, 2\pi/3) structures. It is shown that a non-magnetic Mott insulating state is not realized as the ground state, in the present framework, but as a meta-stable state near the magnetically ordered phase with (2Ï€/3,2Ï€/3)(2\pi/3, 2\pi/3) structure.Comment: 4 pages, 4 figure

    First-order quantum phase transition in the orthogonal-dimer spin chain

    Full text link
    We investigate the low-energy properties of the orthogonal-dimer spin chain characterized by a frustrated dimer-plaquette structure. When the competing antiferromagnetic couplings are varied, the first-order quantum phase transition occurs between the dimer and the plaquette phases, which is accompanied by nontrivial features due to frustration: besides the discontinuity in the lowest excitation gap at the transition point, a sharp level-crossing occurs for the spectrum in the plaquette phase. We further reveal that the plateau in the magnetization curve at 1/4 of the full moment dramatically changes its character in the vicinity of the critical point. It is argued that the first-order phase transition in this system captures some essential properties found in the two-dimensional orthogonal-dimer model proposed for SrCu2(BO3)2\rm SrCu_2(BO_3)_2.Comment: 7 pages, submitted to Phys. Rev.

    Phase diagram of a frustrated mixed-spin ladder with diagonal exchange bonds

    Full text link
    Using exact numerical diagonalization and the conformal field theory approach, we study the effect of magnetic frustrations due to diagonal exchange bonds in a system of two coupled mixed-spin (1,1/2)(1,{1/2}) Heisenberg chains. It is established that relatively moderate frustrations are able to destroy the ferrimagnetic state and to stabilize the critical spin-liquid phase typical for half-integer-spin antiferromagnetic Heisenberg chains. Both phases are separated by a narrow but finite region occupied by a critical partially-polarized ferromagnetic phase.Comment: 5 PRB pages, 7 eps figures, to appear in Phys. Rev.

    Universal properties from local geometric structure of Killing horizon

    Full text link
    We consider universal properties that arise from a local geometric structure of a Killing horizon. We first introduce a non-perturbative definition of such a local geometric structure, which we call an asymptotic Killing horizon. It is shown that infinitely many asymptotic Killing horizons reside on a common null hypersurface, once there exists one asymptotic Killing horizon. The acceleration of the orbits of the vector that generates an asymptotic Killing horizon is then considered. We show that there exists the diff(S1)\textit{diff}(S^1) or diff(R1)\textit{diff}(R^1) sub-algebra on an asymptotic Killing horizon universally, which is picked out naturally based on the behavior of the acceleration. We also argue that the discrepancy between string theory and the Euclidean approach in the entropy of an extreme black hole may be resolved, if the microscopic states responsible for black hole thermodynamics are connected with asymptotic Killing horizons.Comment: 14 pages, v2. minor correction

    Orbital-selective Mott transitions in the anisotropic two-band Hubbard model at finite temperatures

    Full text link
    The anisotropic degenerate two-orbital Hubbard model is studied within dynamical mean-field theory at low temperatures. High-precision calculations on the basis of a refined quantum Monte Carlo (QMC) method reveal that two distinct orbital-selective Mott transitions occur for a bandwidth ratio of 2 even in the absence of spin-flip contributions to the Hund exchange. The second transition -- not seen in earlier studies using QMC, iterative perturbation theory, and exact diagonalization -- is clearly exposed in a low-frequency analysis of the self-energy and in local spectra.Comment: 4 pages, 5 figure

    Chronic Hepatitis B and C Co-Infection Increased All-Cause Mortality in HAART-Naive HIV Patients in Northern Thailand

    Get PDF
    A total of 755 highly active antiretroviral therapy (HAART)-naive HIV-infected patients were enrolled at a government hospital in Thailand from 1 June 2000 to 15 October 2002. Census date of survival was on 31 October 2004 or the date of HAART initiation. Of 700 (92.6%) patients with complete data, the prevalence of hepatitis B virus (HBV) surface antigen and anti-hepatitis C virus (HCV) antibody positivity was 11.9% and 3.3%, respectively. Eight (9.6%) HBV co-infected patients did not have anti-HBV core antibody (anti-HBcAb). During 1166.7 person-years of observation (pyo), 258 (36.9%) patients died [22.1/100 pyo, 95% confidence interval (CI) 16.7–27.8]. HBV and probably HCV co-infection was associated with a higher mortality with adjusted hazard ratios (aHRs) of 1.81 (95% CI 1.30–2.53) and 1.90 (95% CI 0.98–3.69), respectively. Interestingly, HBV co-infection without anti-HBc Ab was strongly associated with death (aHR 6.34, 95% CI 3.99–10.3). The influence of hepatitis co-infection on the natural history of HAART-naive HIV patients requires greater attention

    A study on correlation effects in two dimensional topological insulators

    Full text link
    We investigate correlation effects in two dimensional topological insulators (TI). In the first part, we discuss finite size effects for interacting systems of different sizes in a ribbon geometry. For large systems, there are two pairs of well separated massless modes on both edges. For these systems, we analyze the finite size effects using a standard bosonization approach. For small systems, where the edge states are massive Dirac fermions, we use the inhomogeneous dynamical mean field theory (DMFT) combined with iterative perturbation theory as an impurity solver to study interaction effects. We show that the finite size gap in the edge states is renormalized for weak interactions, which is consistent with a Fermi-liquid picture for small size TIs. In the second part, we investigate phase transitions in finite size TIs at zero temperature focusing on the effects of possible inter-edge Umklapp scattering for the edge states within the inhomogeneous DMFT using the numerical renormalization group. We show that correlation effects are effectively stronger near the edge sites because the coordination number is smaller than in the bulk. Therefore, the localization of the edge states around the edge sites, which is a fundamental property in TIs, is weakened for strong coupling strengths. However, we find no signs for "edge Mott insulating states" and the system stays in the topological insulating state, which is adiabatically connected to the non-interacting state, for all interaction strengths smaller than the critical value. Increasing the interaction further, a nearly homogeneous Mott insulating state is stabilized.Comment: 20 page

    Competing Spin-Gap Phases in a Frustrated Quantum Spin System in Two Dimensions

    Full text link
    We investigate quantum phase transitions among the spin-gap phases and the magnetically ordered phases in a two-dimensional frustrated antiferromagnetic spin system, which interpolates several important models such as the orthogonal-dimer model as well as the model on the 1/5-depleted square lattice. By computing the ground state energy, the staggered susceptibility and the spin gap by means of the series expansion method, we determine the ground-state phase diagram and discuss the role of geometrical frustration. In particular, it is found that a RVB-type spin-gap phase proposed recently for the orthogonal-dimer system is adiabatically connected to the plaquette phase known for the 1/5-depleted square-lattice model.Comment: 6 pages, to appear in JPSJ 70 (2001

    Solution of the Two-Channel Anderson Impurity Model - Implications for the Heavy Fermion UBe13_{13} -

    Full text link
    We solve the two-channel Anderson impurity model using the Bethe-Ansatz. We determine the ground state and derive the thermodynamics, obtaining the impurity entropy and specific heat over the full range of temperature. We show that the low temperature physics is given by a line of fixed points decribing a two-channel non Fermi liquid behavior in the integral valence regime associated with moment formation as well as in the mixed valence regime where no moment forms. We discuss relevance for the theory of UBe13_{13}.Comment: 4 pages, 2 figures, (to be published in PRL
    • …
    corecore