12 research outputs found
Efficacy Of Natural Plant Extracts In Antimicrobial Packaging Systems
Antimicrobial plant extracts used in food packaging provide a healthy packaging alternatives. They contain aromatic and phenolic compounds that are responsible for their antibacterial properties. In this study, we report the antibacterial effects of extracts obtained from sea buckthorn (Hippophaë rhamnoides L.) leaves, and inner bark of pine trees (Pinus silvestris) that were applied as coatings on paper suitable for packaging application. Extracts from sea buckthorn leaves exhibited antibacterial effect both as a solvent extract and as a coating on paper against Pseudomonas aeruginosa as test bacteria. However, coatings of pine bark extract did not exhibit antibacterial effect as coatings even though the solvent extracts exhibited antibacterial effects. Staphylococcus aureus demonstrated resistance towards both plant extracts after they had been applied as coatings on paper for packaging
Antimicrobial characterization of silver nanoparticle-coated surfaces by âtouch testâ method
Abstract: Bacterial infections, especially by antimicrobial resistant (AMR) bacteria, are an increasing problem worldwide. AMR is especially a problem with health care-associated infections due to bacteria in hospital environments being easily transferred from patient to patient and from patient to environment, and thus, solutions to prevent bacterial transmission are needed. Hand washing is an effective tool for preventing bacterial infections, but other approaches such as nanoparticle-coated surfaces are also needed. In the current study, direct and indirect liquid flame spray (LFS) method was used to produce silver nanoparticle-coated surfaces. The antimicrobial properties of these nanoparticle surfaces were evaluated with the âtouch testâ method against Escherichia coli and Staphylococcus aureus. It was shown in this study that in glass samples one silver nanoparticle-coating cycle can inhibit E. coli growth, whereas at least two coating cycles were needed to inhibit S. aureus growth. Silver nanoparticle-coated polyethylene (PE) and PE terephthalate samples did not inhibit bacterial growth as effectively as glass samples: three nanoparticle-coating cycles were needed to inhibit E. coli growth, and more than 30 coating cycles were needed until S. aureus growth was inhibited. To conclude, with the LFS method, it is possible to produce nanostructured large-area antibacterial surfaces which show antibacterial effect against clinically relevant pathogens. Results indicate that the use of silver nanoparticle surfaces in hospital environments could prevent health care-associated infections in vivo.</p
Characterization of flame coated nanoparticle surfaces with antibacterial properties and the heat-induced embedding in thermoplastic-coated paper
Silver nanoparticles deposited on surfaces can provide an antibacterial effect with potential uses in, for example, health-care settings. However, release of nanoparticles and their potential exposure to the environment is of concern. The current work demonstrates a continuous synthesis that simultaneously deposits silver nanoparticles onto plastic coated paper surface by utilizing the liquid flame spray (LFS) aerosol process. Heat from LFS is used to soften the thermoplastic paper surface, which enables partial and full embedding of the nanoparticles, thereby improving adhesion. The embedding is confirmed with atomic force and scanning electron microscopy, and the deposited silver amounts are quantified with X-ray photoelectron spectroscopy. The results suggest that embedding was more effective in PE-coated paper samples due to the lower glass transition temperature when compared to PET-coated paper samples. The antibacterial properties of the surfaces against E. coli and S. aureus were maintained and confirmed with a previously developed 'Touch-Test Method: The LFS process has the potential to be used for large-scale manufacturing of antibacterial surfaces with improved nanoparticle adhesion on appropriately chosen thermoplastic surfaces
Antibacterial surfaces produced by liquid flame spray deposition of silver nanoparticles
Healthcare associated infections (HAIs) are one of the major problems of modern healthcare. Pathogenic bacteria responsible for these HAIs are mostly transmitted via surfaces. Emphasis on preventive measures can cumulatively reduce associated costs and mortality related to HAIs. Antibacterial surfaces within healthcare settings have been considered as one of the approaches to reduce HAIs. Therefore, further development and wide use of antibacterial surfaces in healthcare settings could be a step that helps to significantly reduce the problem. Nanoparticles (NPs), plant extracts and other inorganic substances have been used for the production of antibacterial surfaces. Particularly, silver nanoparticles (AgNPs) have been shown to have broad-spectrum antibacterial properties, which has resulted in its wide use for fabricating antibacterial products. NP production methods have also evolved continuously, but a production method that allows for continuous synthesis of NPs and their deposition on surfaces had been elusive until the development of Liquid Flame Spray (LFS). LFS enables high speed NP deposition without effluents, and it is suitable for producing large-area antibacterial surfaces. In this project, LFS was used to deposit AgNPs onto paper, glass and fabrics to produce antibacterial surfaces. After NP deposition, scanning electron microscopy and atomic force microscopy (AFM) were used to visualize the samples. Surface chemical characterization was done using x-ray photoelectron spectroscopy, and silver leaching tests were analyzed using inductive coupled plasma-mass spectroscopy. NP adhesion to substrates was improved using thin plasma polymer coating layer, as well as Al2O3 produced by atomic layer deposition. Antibacterial properties were examined using a newly developed âTouch Testâ method, which simulates the transfer of bacteria from one surface to another by touch. Imaging results showed that nanoparticles are produced, and multiple flame passes result in the deposition of more AgNPs on sample surfaces. AFM scratch testing in contact mode confirmed results of improved NP adhesion by plasma coating. Antibacterial action against E. coli, S. aureus, and other bacteria was demonstrated, and in the case of E. coli, also for samples that had a thin layer of plasma coating on top of AgNPs. The exact mechanism of the antibacterial effect from below the plasma coating requires further investigation, since usually a direct contact to AgNPs is assumed to be a prerequisite. However, the results of this study suggest that a thin immobilizing layer can be used to improve the adhesion of AgNPs to substrates and to limit their exposure to environment, while still maintaining the desired antibacterial properties
Activated cashew carbon-manganese oxide based electrodes for supercapacitor applications
The current global energy challenge which affects most developing countries in particular, is of major source of concern today. The availability of less expensive techniques of storing excess generated energy is critical to the success of the renewable energy roadmaps implementation. In this study, hydrothermal and chemical leaching methods have been used to synthesize MnO2 nanoparticles using KMnO4 and MnSO4 as precursors at 140 °C and from natural local manganese ore. Activated Carbon (ACF) have also been produced from agricultural Cashew biomass waste, through a physical carbonization and KOH activation process using temperatures of 700 °C â 900 °C for periods between 1 and 2 h. The as-prepared materials have been characterized via XRD, Raman, FTIR, SEM. Electrochemical performance measurements (CV, EIS and GCD) were carried out on the prepared electrodes. The specific capacitance values obtained were in the range of 2.8 F/g - 6.5 F/g at different scan rates of 20 mV -50 mV respectively in a potential range of -0.4 to +0.4 V and -0.4 to +0.6 V for the various types of electrodes
Antimicrobial characterization of silver nanoparticle-coated surfaces by âtouch testâ method
Bacterial infections, especially by antimicrobial resistant (AMR) bacteria, are an increasing problem worldwide. AMR is especially a problem with health care-associated infections due to bacteria in hospital environments being easily transferred from patient to patient and from patient to environment, and thus, solutions to prevent bacterial transmission are needed. Hand washing is an effective tool for preventing bacterial infections, but other approaches such as nanoparticle-coated surfaces are also needed. In the current study, direct and indirect liquid flame spray (LFS) method was used to produce silver nanoparticle-coated surfaces. The antimicrobial properties of these nanoparticle surfaces were evaluated with the âtouch testâ method against Escherichia coli and Staphylococcus aureus. It was shown in this study that in glass samples one silver nanoparticle-coating cycle can inhibit E. coli growth, whereas at least two coating cycles were needed to inhibit S. aureus growth. Silver nanoparticle-coated polyethylene (PE) and PE terephthalate samples did not inhibit bacterial growth as effectively as glass samples: three nanoparticle-coating cycles were needed to inhibit E. coli growth, and more than 30 coating cycles were needed until S. aureus growth was inhibited. To conclude, with the LFS method, it is possible to produce nanostructured large-area antibacterial surfaces which show antibacterial effect against clinically relevant pathogens. Results indicate that the use of silver nanoparticle surfaces in hospital environments could prevent health care-associated infections in vivo.publishedVersionPeer reviewe
Antimicrobial characterization of silver nanoparticle-coated surfaces by “touch test” method
Bacterial infections, especially by antimicrobial resistant (AMR) bacteria, are an increasing problem worldwide. AMR is especially a problem with health care-associated infections due to bacteria in hospital environments being easily transferred from patient to patient and from patient to environment, and thus, solutions to prevent bacterial transmission are needed. Hand washing is an effective tool for preventing bacterial infections, but other approaches such as nanoparticle-coated surfaces are also needed. In the current study, direct and indirect liquid flame spray (LFS) method was used to produce silver nanoparticle-coated surfaces. The antimicrobial properties of these nanoparticle surfaces were evaluated with the âtouch testâ method against Escherichia coli and Staphylococcus aureus. It was shown in this study that in glass samples one silver nanoparticle-coating cycle can inhibit E. coli growth, whereas at least two coating cycles were needed to inhibit S. aureus growth. Silver nanoparticle-coated polyethylene (PE) and PE terephthalate samples did not inhibit bacterial growth as effectively as glass samples: three nanoparticle-coating cycles were needed to inhibit E. coli growth, and more than 30 coating cycles were needed until S. aureus growth was inhibited. To conclude, with the LFS method, it is possible to produce nanostructured large-area antibacterial surfaces which show antibacterial effect against clinically relevant pathogens. Results indicate that the use of silver nanoparticle surfaces in hospital environments could prevent health care-associated infections in vivo.Peer reviewe