95 research outputs found

    Accounting for Diffusion in Agent Based Models of Reaction-Diffusion Systems with Application to Cytoskeletal Diffusion

    Get PDF
    Diffusion plays a key role in many biochemical reaction systems seen in nature. Scenarios where diffusion behavior is critical can be seen in the cell and subcellular compartments where molecular crowding limits the interaction between particles. We investigate the application of a computational method for modeling the diffusion of molecules and macromolecules in three-dimensional solutions using agent based modeling. This method allows for realistic modeling of a system of particles with different properties such as size, diffusion coefficients, and affinity as well as the environment properties such as viscosity and geometry. Simulations using these movement probabilities yield behavior that mimics natural diffusion. Using this modeling framework, we simulate the effects of molecular crowding on effective diffusion and have validated the results of our model using Langevin dynamics simulations and note that they are in good agreement with previous experimental data. Furthermore, we investigate an extension of this framework where single discrete cells can contain multiple particles of varying size in an effort to highlight errors that can arise from discretization that lead to the unnatural behavior of particles undergoing diffusion. Subsequently, we explore various algorithms that differ in how they handle the movement of multiple particles per cell and suggest an algorithm that properly accommodates multiple particles of various sizes per cell that can replicate the natural behavior of these particles diffusing. Finally, we use the present modeling framework to investigate the effect of structural geometry on the directionality of diffusion in the cell cytoskeleton with the observation that parallel orientation in the structural geometry of actin filaments of filopodia and the branched structure of lamellipodia can give directionality to diffusion at the filopodia-lamellipodia interface

    Who Watches the Watchmen? An Appraisal of Benchmarks for Multiple Sequence Alignment

    Get PDF
    Multiple sequence alignment (MSA) is a fundamental and ubiquitous technique in bioinformatics used to infer related residues among biological sequences. Thus alignment accuracy is crucial to a vast range of analyses, often in ways difficult to assess in those analyses. To compare the performance of different aligners and help detect systematic errors in alignments, a number of benchmarking strategies have been pursued. Here we present an overview of the main strategies--based on simulation, consistency, protein structure, and phylogeny--and discuss their different advantages and associated risks. We outline a set of desirable characteristics for effective benchmarking, and evaluate each strategy in light of them. We conclude that there is currently no universally applicable means of benchmarking MSA, and that developers and users of alignment tools should base their choice of benchmark depending on the context of application--with a keen awareness of the assumptions underlying each benchmarking strategy.Comment: Revie

    F- and G-Actin Concentrations in Lamellipodia of Moving Cells

    Get PDF
    Cells protrude by polymerizing monomeric (G) into polymeric (F) actin at the tip of the lamellipodium. Actin filaments are depolymerized towards the rear of the lamellipodium in a treadmilling process, thereby supplementing a G-actin pool for a new round of polymerization. In this scenario the concentrations of F- and G-actin are principal parameters, but have hitherto not been directly determined. By comparing fluorescence intensities of bleached and unbleached regions of lamellipodia in B16-F1 mouse melanoma cells expressing EGFP-actin, before and after extraction with Triton X-100, we show that the ratio of F- to G-actin is 3.2+/βˆ’0.9. Using electron microscopy to determine the F-actin content, this ratio translates into F- and G-actin concentrations in lamellipodia of approximately 500 Β΅M and 150 Β΅M, respectively. The excess of G-actin, at several orders of magnitude above the critical concentrations at filament ends indicates that the polymerization rate is not limited by diffusion and is tightly controlled by polymerization/depolymerization modulators

    The elementary events underlying force generation in neuronal lamellipodia

    Get PDF
    We have used optical tweezers to identify the elementary events underlying force generation in neuronal lamellipodia. When an optically trapped bead seals on the lamellipodium membrane, Brownian fluctuations decrease revealing the underlying elementary events. The distribution of bead velocities has long tails with frequent large positive and negative values associated to forward and backward jumps occurring in 0.1–0.2β€…ms with varying amplitudes up to 20β€…nm. Jump frequency and amplitude are reduced when actin turnover is slowed down by the addition of 25β€…nM Jasplakinolide. When myosin II is inhibited by the addition of 20 ΞΌM Blebbistatin, jump frequency is reduced but to a lesser extent than by Jasplainolide. These jumps constitute the elementary events underlying force generation

    Analysis of trastuzumab and chemotherapy in advanced breast cancer after the failure of at least one earlier combination: An observational study

    Get PDF
    BACKGROUND: Combining trastuzumab and chemotherapy is standard in her2/neu overexpressing advanced breast cancer. It is not established however, whether trastuzumab treatment should continue after the failure of one earlier combination. In this trial, we report our experience with continued treatment beyond disease progression. METHODS: Fifty-four patients, median age 46 years, range 25–73 years, were included. We analysed for time to tumour progression (TTP) for first, second and beyond second line treatment, response rates and overall survival. RESULTS: Median time of observation was 24 months, range 7–51. Response rates for first line treatment were 7.4% complete remission (CR), 35.2% partial remissions (PR), 42.6% stable disease > 6 months (SD) and 14.8% of patients experienced disease progression despite treatment (PD). Corresponding numbers for second line were 3.7% CR, 22.2% PR, 42.6% SD and 31.5% PD; numbers for treatment beyond second line (60 therapies, 33 pts 3(rd )line, 18 pts 4(th )line, 6 pts 5(th )line, 2 pts 6(th )line and 1 patient 7(th )line) were 1.7% CR, 28.3% PR, 28.3% SD and 41.6% PD respectively. Median TTP was 6 months (m) in the first line setting, and also 6 m for second line and beyond second line. An asymptomatic drop of left ventricular ejection fraction below 50% was observed in one patient. No case of symptomatic congestive heart failure was observed. CONCLUSION: The data presented clearly strengthen evidence that patients do profit from continued trastuzumab treatment. The fact that TTP did not decrease significantly from first line to beyond second line treatment is especially noteworthy. Still, randomized trials are warranted

    Microtubules as Platforms for Assaying Actin Polymerization In Vivo

    Get PDF
    The actin cytoskeleton is continuously remodeled through cycles of actin filament assembly and disassembly. Filaments are born through nucleation and shaped into supramolecular structures with various essential functions. These range from contractile and protrusive assemblies in muscle and non-muscle cells to actin filament comets propelling vesicles or pathogens through the cytosol. Although nucleation has been extensively studied using purified proteins in vitro, dissection of the process in cells is complicated by the abundance and molecular complexity of actin filament arrays. We here describe the ectopic nucleation of actin filaments on the surface of microtubules, free of endogenous actin and interfering membrane or lipid. All major mechanisms of actin filament nucleation were recapitulated, including filament assembly induced by Arp2/3 complex, formin and Spir. This novel approach allows systematic dissection of actin nucleation in the cytosol of live cells, its genetic re-engineering as well as screening for new modifiers of the process

    Pharmacological Inhibition of Caspase and Calpain Proteases: A Novel Strategy to Enhance the Homing Responses of Cord Blood HSPCs during Expansion

    Get PDF
    Background: Expansion of hematopoietic stem/progenitor cells (HSPCs) is a well-known strategy employed to facilitate the transplantation outcome. We have previously shown that the prevention of apoptosis by the inhibition of cysteine proteases, caspase and calpain played an important role in the expansion and engraftment of cord blood (CB) derived HSPCs. We hypothesize that these protease inhibitors might have maneuvered the adhesive and migratory properties of the cells rendering them to be retained in the bone marrow for sustained engraftment. The current study was aimed to investigate the mechanism of the homing responses of CB cells during expansion. Methodology/Principal Findings: CB derived CD34 + cells were expanded using a combination of growth factors with and without Caspase inhibitor-zVADfmk or Calpain 1 inhibitor- zLLYfmk. The cells were analyzed for the expression of homingrelated molecules. In vitro adhesive/migratory interactions and actin polymerization dynamics of HSPCs were assessed. In vivo homing assays were carried out in NOD/SCID mice to corroborate these observations. We observed that the presence of zVADfmk or zLLYfmk (inhibitors) caused the functional up regulation of CXCR4, integrins, and adhesion molecules, reflecting in a higher migration and adhesive interactions in vitro. The enhanced actin polymerization and the RhoGTPase protein expression complemented these observations. Furthermore, in vivo experiments showed a significantly enhanced homing to the bone marrow of NOD/SCID mice

    High-Resolution X-Ray Structure of the Trimeric Scar/WAVE-Complex Precursor Brk1

    Get PDF
    The Scar/WAVE-complex links upstream Rho-GTPase signaling to the activation of the conserved Arp2/3-complex. Scar/WAVE-induced and Arp2/3-complex-mediated actin nucleation is crucial for actin assembly in protruding lamellipodia to drive cell migration. The heteropentameric Scar/WAVE-complex is composed of Scar/WAVE, Abi, Nap, Pir and a small polypeptide Brk1/HSPC300, and recent work suggested that free Brk1 serves as a homooligomeric precursor in the assembly of this complex. Here we characterized the Brk1 trimer from Dictyostelium by analytical ultracentrifugation and gelfiltration. We show for the first time its dissociation at concentrations in the nanomolar range as well as an exchange of subunits within different DdBrk1 containing complexes. Moreover, we determined the three-dimensional structure of DdBrk1 at 1.5 Γ… resolution by X-ray crystallography. Three chains of DdBrk1 are associated with each other forming a parallel triple coiled-coil bundle. Notably, this structure is highly similar to the heterotrimeric Ξ±-helical bundle of HSPC300/WAVE1/Abi2 within the human Scar/WAVE-complex. This finding, together with the fact that Brk1 is collectively sandwiched by the remaining subunits and also constitutes the main subunit connecting the triple-coil domain of the HSPC300/WAVE1/Abi2/ heterotrimer to Sra1(Pir1), implies a critical function of this subunit in the assembly process of the entire Scar/WAVE-complex

    Computational Analysis of the Spatiotemporal Coordination of Polarized PI3K and Rac1 Activities in Micro-Patterned Live Cells

    Get PDF
    Polarized molecular activities play important roles in guiding the cell toward persistent and directional migration. In this study, the polarized distributions of the activities of phosphatidylinositol 3-kinase (PI3K) and the Rac1 small GTPase were monitored using chimeric fluorescent proteins (FPs) in cells constrained on micro-patterned strips, with one end connecting to a neighboring cell (junction end) and the other end free of cell-cell contact (free end). The recorded spatiotemporal dynamics of the fluorescent intensity from different cells was scaled into a uniform coordinate system and applied to compute the molecular activity landscapes in space and time. The results revealed different polarization patterns of PI3K and Rac1 activity induced by the growth factor stimulation. The maximal intensity of different FPs, and the edge position and velocity at the free end were further quantified to analyze their correlation and decipher the underlying signaling sequence. The results suggest that the initiation of the edge extension occurred before the activation of PI3K, which led to a stable extension of the free end followed by the Rac1 activation. Therefore, the results support a concerted coordination of sequential signaling events and edge dynamics, underscoring the important roles played by PI3K activity at the free end in regulating the stable lamellipodia extension and cell migration. Meanwhile, the quantification methods and accompanying software developed can provide a convenient and powerful computational analysis platform for the study of spatiotemporal molecular distribution and hierarchy in live cells based on fluorescence images

    Actin: its cumbersome pilgrimage through cellular compartments

    Get PDF
    In this article, we follow the history of one of the most abundant, most intensely studied proteins of the eukaryotic cells: actin. We report on hallmarks of its discovery, its structural and functional characterization and localization over time, and point to present days’ knowledge on its position as a member of a large family. We focus on the rather puzzling number of diverse functions as proposed for actin as a dual compartment protein. Finally, we venture on some speculations as to its origin
    • …
    corecore