30 research outputs found
Lipid bilayer thickness determines cholesterol's location in model membranes
Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of different lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. These results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes
The effect of peptide/lipid hydrophobic mismatch on the phase behavior of model membranes mimicking the lipid composition in Escherichia coli membranes.
The effect of hydrophobic peptides on the lipid phase behavior of an aqueous dispersion of dioleoylphosphatidylethanolamine and dioleoylphosphatidylglycerol (7:3 molar ratio) was studied by (31)P NMR spectroscopy. The peptides (WALPn peptides, where n is the total number of amino acid residues) are designed as models for transmembrane parts of integral membrane proteins and consist of a hydrophobic sequence of alternating leucines and alanines, of variable length, that is flanked on both ends by tryptophans. The pure lipid dispersion was shown to undergo a lamellar-to-isotropic phase transition at approximately 60 degrees C. Small-angle x-ray scattering showed that at a lower water content a cubic phase belonging to the space group Pn3m is formed, suggesting also that the isotropic phase in the lipid dispersion represents a cubic liquid crystalline phase. It was found that the WALP peptides very efficiently promote formation of nonlamellar phases in this lipid system. At a peptide-to-lipid (P/L) molar ratio of 1:1000, the shortest peptide used, WALP16, lowered the lamellar-to-isotropic phase transition by approximately 15 degrees C. This effect was less for longer peptides. For all of the WALP peptides used, an increase in peptide concentration led to a further lowering of the phase transition temperature. At the highest P/L ratio (1:25) studied, WALP16 induced a reversed hexagonal liquid crystalline (H(II)) phase, while the longer peptides still promoted the formation of an isotropic phase. Peptides with a hydrophobic length larger than the bilayer thickness were found to be unable to inhibit formation of the isotropic phase. The results are discussed in terms of mismatch between the hydrophobic length of the peptide and the hydrophobic thickness of the lipid bilayer and its consequences for lipid-protein interactions in membranes
Influence of Lipid/Peptide Hydrophobic Mismatch on the Thickness of Diacylphosphatidylcholine Bilayers. A 2H NMR and ESR Study Using Designed Transmembrane Alpha-Helical Peptides and Gramicidin A
We have investigated the effect of a series of hydrophobic polypeptides (WALP peptides) on the mean hydrophobic thickness of (chain-perdeuterated) phosphatidylcholines (PCs) with different acyl chain length, using 2H NMR and ESR techniques. The WALP peptides are uncharged and consist of a sequence with variable length of alternating leucine and alanine, flanked on both sides by two tryptophans, and with the N- and C-termini blocked, e.g., FmAW2(LA)nW2AEtn. 2H NMR measurements showed that the shortest peptide with a total length of 16 amino acids (WALP16) causes an increase of 0.6 Ă
in bilayer thickness in di-C12-PC, a smaller increase in di-C14-PC, no effect in di-C16-PC, and a decrease of 0.4 Ă
in di-C18-PC, which was the largest decrease observed in any of the peptide/lipid systems. The longest peptide, WALP19, in di-C12-PC caused the largest increase in thickness of the series (+1.4 Ă
), which decreased again for longer lipids toward di-C18-PC, in which no effect was noticed. WALP17 displayed an influence intermediate between that of WALP16 and WALP19. Altogether, incorporation of the WALP peptides was found to result in small but very systematic changes in bilayer thickness and area per lipid molecule, depending on the difference in hydrophobic length between the peptide and the lipid bilayer in the liquid-crystalline phase. ESR measurements with spin-labeled lipid probes confirmed this result. Because thickness is expected to be influenced most at the lipids directly adjacent to the peptides, also the maximal adaptation of these first-shell lipids was estimated. The calculation was based on the assumption that there is little or no aggregation of the WALP peptides, as was supported by ESR, and that lipid exchange is rapid on the 2H NMR time scale. It was found that even the maximal possible changes in first-shell lipid length were relatively small and represented only a partial response to mismatch. The synthetic WALP peptides are structurally related to the gramicidin channel, which was therefore used for comparison. In most lipid systems, gramicidin proved to be a stronger perturber of bilayer thickness than WALP19, although its length should approximate that of the shorter WALP16. The effects of gramicidin and WALP peptides on bilayer thickness were evaluated with respect to previous 31P NMR studies on the effects of these peptides on macroscopic lipid phase behavior. Both approaches indicate that, in addition to the effective hydrophobic length, also the physical nature of the peptide surface is a modulator of lipid order
Induction of Nonbilayer Structures in Diacylphosphatidylcholine Model Membranes by Transmembrane Alpha-Helical Peptides: Importance of Hydrophobic Mismatch and Proposed Role of Tryptophans
We have investigated the effect of several hydrophobic polypeptides on the phase behavior of diacylphosphatidylcholines with different acyl chain length. The polypeptides are uncharged and consist of a sequence with variable length of alternating leucine and alanine, flanked on both sides by two tryptophans, and with the N- and C-termini blocked. First it was demonstrated by circular dichroism measurements that these peptides adopt an -helical conformation with a transmembrane orientation in bilayers of dimyristoylphosphatidylcholine. Subsequent 31P NMR measurements showed that the peptides can affect lipid organization depending on the difference in hydrophobic length between the peptide and the lipid bilayer in the liquid-crystalline phase. When a 17 amino acid residue long peptide (WALP17) was incorporated in a 1/10 molar ratio of peptide to lipid, a bilayer was maintained in saturated phospholipids containing acyl chains of 12 and 14 C atoms, an isotropic phase was formed at 16 C atoms, and an inverted hexagonal (HII) phase at 18 and 20 C atoms. For a 19 amino acid residue long peptide (WALP19) similar changes in lipid phase behavior were observed, but at acyl chain lengths of 2 C-atoms longer. Also in several cis-unsaturated phosphatidylcholine model membranes it was found that these peptides and a shorter analog (WALP16) induce the formation of nonbilayer structures as a consequence of hydrophobic mismatch. It is proposed that this unique ability of the peptides to induce nonbilayer structures in phosphatidylcholine model membranes is due to the presence of two tryptophans at both sides of the membrane/water interface, which prevent the peptide from aggregating when the mismatch is increased. Comparison of the hydrophobic length of the bilayers with the length of the different peptides showed that it is the precise extent of mismatch that determines whether the preferred lipid organization is a bilayer, isotropic phase, or HII phase. The peptide-containing bilayer and HII phase were further characterized after sucrose density gradient centrifugation of mixtures of WALP16 and dioleoylphosphatidylcholine. 31P NMR measurements of the isolated fractions showed that a complete separation of both components was obtained. Chemical analysis of these fractions in samples with varying peptide concentration indicated that the HII phase is highly enriched in peptide (peptide/lipid molar ratio of 1/6), while the maximum solubility of the peptide in the lipid bilayer is about 1/24 (peptide/lipid, molar). A molecular model of the peptide-induced HII phase is presented that is consistent with the results obtained thus far
Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions
Membrane model systems consisting of phosphatidylcholines and hydrophobic -helical peptides with tryptophan flanking residues, a characteristic motif for transmembrane protein segments, were used to investigate the contribution of tryptophans to peptide-lipid interactions. Peptides of different lengths and with the flanking tryptophans at different positions in the sequence were incorporated in relatively thick or thin lipid bilayers. The organization of the systems was assessed by NMR methods and by hydrogen/deuterium exchange in combination with mass spectrometry. Previously, it was found that relatively short peptides induce nonlamellar phases and that relatively long analogues order the lipid acyl chains in response to peptide-bilayer mismatch. Here it is shown that these effects do not correlate with the total hydrophobic peptide length, but instead with the length of the stretch between the flanking tryptophan residues. The tryptophan indole ring was consistently found to be positioned near the lipid carbonyl moieties, regardless of the peptide-lipid combination, as indicated by magic angle spinning NMR measurements. These observations suggest that the lipid adaptations are not primarily directed to avoid a peptide-lipid hydrophobic mismatch, but instead to prevent displacement of the tryptophan side chains from the polar-apolar interface. In contrast, long lysine-flanked analogues fully associate with a bilayer without significant lipid adaptations, and hydrogen/deuterium exchange experiments indicate that this is achieved by simply exposing more (hydrophobic) residues to the lipid headgroup region. The results highlight the specific properties that are imposed on transmembrane protein segments by flanking tryptophan residues
Is There a Preferential Interaction between Cholesterol and Tryptophan Residues in Membrane Proteins?
Recently, several indications have been found that suggest a preferential interaction between cholesterol and tryptophan residues located near the membraneâwater interface. The aim of this study was to investigate by direct methods how tryptophan and cholesterol interact with each other and what the possible consequences are for membrane organization. For this purpose, we used cholesterol-containing model membranes of dimyristoylphosphatidylcholine (DMPC) in which a transmembrane model peptide with flanking tryptophans [acetyl-GWW(LA)8LWWA-amide], called WALP23, was incorporated to mimic interfacial tryptophans of membrane proteins. These model systems were studied with two complementary methods. (1) Steady-state and time-resolved Förster resonance energy transfer (FRET) experiments employing the fluorescent cholesterol analogue dehydroergosterol (DHE) in combination with a competition experiment with cholesterol were used to obtain information about the distribution of cholesterol in the bilayer in the presence of WALP23. The results were consistent with a random distribution of cholesterol which indicates that cholesterol and interfacial tryptophans are not preferentially located next to each other in these bilayer systems. (2) Solid-state 2H NMR experiments employing either deuterated cholesterol or indole ring-deuterated WALP23 peptides were performed to study the orientation and dynamics of both molecules. The results showed that the quadrupolar splittings of labeled cholesterol were not affected by an interaction with tryptophan-flanked peptides and, vice versa, that the quadrupolar splittings of labeled indole rings in WALP23 are not significantly influenced by addition of cholesterol to the bilayer. Therefore, both NMR and fluorescence spectroscopy results independently show that, at least in the model systems studied here, there is no evidence for a preferential interaction between cholesterol and tryptophans located at the bilayer interface