175 research outputs found

    Random walk on Sierpinski-type multifractals

    Full text link
    A method is established which allows the calculation of the walk dimension for Sierpinski-type multifractals. The multifractal scaling behaviour of the average time needed to cover a distance in the mentionned multifractals is shown. For the average-time-multifractal we calculate the Renyi dimensions and allpy the f(alpha)-formalism.Comment: 9 pages, Postscrip

    Pressure-driven magnetic moment collapse in the ground state of MnO

    Get PDF
    The zero temperature Mott transition region in antiferromagnetic, spin S=5/2 MnO is probed using the correlated band theory LSDA+U method. The first transition encountered is an insulator-insulator volume collapse within the rocksalt structure that is characterized by an unexpected Hund's rule violating `spin-flip' moment collapse. This spin-flip to S=1/2 takes fullest advantage of the anisotropy of the Coulomb repulsion, allowing gain in the kinetic energy (which increases with decreasing volume) while retaining a sizable amount of the magnetic exchange energy. While transition pressures vary with the interaction strength, the spin-flip state is robust over a range of interaction strengths and for both B1 and B8 structures

    On the electronic structure of CaCuO2 and SrCuO2

    Full text link
    Recent electronic structure calculations for the prototypical lowdimensional cuprate compounds CaCuO2 ans SrCuO2 performed by Wu et. al. (J. Phys.: Condens. Matter v. 11 p.4637 (1999))are critically reconsidered, applying high precision full-potential bandstructure methods. It is shown that the bandstructure calculations presented by the authors contain several important inconsistencies, which make their main conclusions highly questionable.Comment: 4 pages, 3 figures, submitted to J. Phys. Condens. Matte

    New insight into the physics of iron pnictides from optical and penetration depth data

    Full text link
    We report theoretical values for the unscreened plasma frequencies Omega_p of several Fe pnictides obtained from DFT based calculations within the LDA and compare them with experimental plasma frequencies obtained from reflectivity data. The sizable renormalization observed for all considered compounds points to the presence of many-body effects beyond the LDA. From the large empirical background dielectric constant of about 12-15, we estimate a large arsenic polarizability of about 9.5 +- 1.2 Angstroem^3 where the details depend on the polarizabilities of the remaining ions taken from the literature. This large polarizability can significantly reduce the value of the Coulomb repulsion U_d about 4 eV on iron known from iron oxides to a level of 2 eV or below. In general, this result points to rather strong polaronic effects as suggested by G.A. Sawatzky et al., in Refs. arXiv:0808.1390 and arXiv:0811.0214 (Berciu et al.). Possible consequences for the conditions of a formation of bipolarons are discussed, too. From the extrapolated muon spin rotation penetration depth data at T= 0 and the experimental Omega_p we estimate the total coupling constant lambda_tot for the el-boson interaction within the Eliashberg-theory adopting a single band approximation. For LaFeAsO_0.9F_0.1 a weak to intermediately strong coupling regime and a quasi-clean limit behaviour are found. For a pronounced multiband case we obtain a constraint for various intraband coupling constants which in principle allows for a sizable strong coupling in bands with either slow electrons or holes.Comment: 34 pages, 10 figures, submitted to New Journal of Physics (30.01.2009
    corecore