120 research outputs found

    Levels of Complexity in the Microstructure of Mammalian Enamel and Their Application in Studies of Systematics

    Get PDF
    Description and analysis of the complex structure of enamel can be facilitated through the application of a system of hierarchical levels of structural complexity. Five interdependent levels are distinguished. These are the levels of: 1) crystallites, 2) prisms, 3) enamel types, 4) schmelzmuster, and 5) dentition. This system provides a basis for analysis of both variation of particular structures and variation of structural types throughout a mammal\u27s dentition. Optimally, in wide ranging systematic and biomechanical studies, all levels of structural complexity should be considered, but lack of information about one level does not prevent significant analyses at other levels

    Cosmopolitanism among Gondwanan Late Cretaceous mammals

    Get PDF
    Consistent with geophysical evidence for the breaking up of Pangaea, it has been hypothesized that Cretaceous vertebrates on progressively isolated landmasses exhibit generally increasing levels of provincialism, with distinctly heightened endemism occurring at the beginning of the Late Cretaceous. The Cretaceous fossil record from the southern supercontinent of Gondwana has been much too poor to test this hypothesis with regards to mammals (Fig. 1). Early Cretaceous mammals are known only from isolated sites in Argentina, Australia, Cameroon and Morocco. Apart from several occurrences in South America, knowledge of Late Cretaceous Gondwanan mammals is limited to a single site in India that previously yielded a few specimens of placental mammals, and a site in Madagascar that previously yielded only one indeterminate tooth fragment. Here we report the occurrence of a highly specialized and distinctive group of extinct mammals, the Sudamericidae (Gondwanatheria), in the Late Cretaceous of Madagascar and India. These new records comprise the first evidence of gondwanatheres outside South America and the first indication of cosmopolitanism among Late Cretaceous Gondwanan mammals. Antarctica may have served as an important Cretaceous biogeographic link between South America and Indo-Madagascar

    The Development of Cephalic Armor in The Tokay Gecko (Squamata: Gekkonidae: \u3cem\u3eGekko gecko\u3c/em\u3e)

    Get PDF
    Armored skin resulting from the presence of bony dermal structures, osteoderms, is an exceptional phenotype in gekkotans (geckos and flap-footed lizards) only known to occur in three genera: Geckolepis, Gekko, and Tarentola. The Tokay gecko (Gekko gecko LINNAEUS 1758) is among the best-studied geckos due to its large size and wide range of occurrence, and although cranial dermal bone development has previously been investigated, details of osteoderm development along a size gradient remain less well-known. Likewise, a comparative survey of additional species within the broader Gekko clade to determine the uniqueness of this trait has not yet been completed. Here, we studied a large sample of gekkotans (38 spp.), including 18 specimens of G. gecko, using X-rays and high-resolution computed tomography for visualizing and quantifying the dermal armor in situ. Results from this survey confirm the presence of osteoderms in a second species within this genus, Gekko reevesii GRAY 1831, which exhibits discordance in timing and pattern of osteoderm development when compared with its sister taxon, G. gecko. We discuss the developmental sequence of osteoderms in these two species and explore in detail the formation and functionality of these enigmatic dermal ossifications. Finally, we conducted a comparative analysis of endolymphatic sacs in a wide array of gekkotans to explore previous ideas regarding the role of osteoderms as calcium reservoirs. We found that G. gecko and other gecko species with osteoderms have highly enlarged endolymphatic sacs relative to their body size, when compared to species without osteoderms, which implies that these membranous structures might fulfill a major role of calcium storage even in species with osteoderms

    A distinguishing feature of Pongo upper molars and its implications for the taxonomic identification of isolated hominid teeth from the Pleistocene of Asia

    Get PDF
    The taxonomic status of isolated hominoid teeth from the Asian Pleistocene has long been controversial due to difficulties distinguishing between pongine and hominin molars given their high degree of morphometrical variation and overlap. Here, we combine nonmetric and geometric morphometric data to document a dental pattern that appears to be taxonomically diagnostic among Pongo. We focus on the protoconule, a cuspule of well‐documented evolutionary history, as well as on shape differences of the mesial fovea of the upper molars
    • 

    corecore