127 research outputs found

    MAIT cells come to the rescue in cancer immunotherapy?

    Get PDF
    Recent progress in immunobiology has led to the observation that, among cells classically categorized as the typical representatives of the adaptive immune system, i.e., T cells, some possess the phenotype of innate cells. Invariant T cells are characterized by T cell receptors recognizing a limited range of non-peptide antigens, presented only in the context of particular molecules. Mucosal-associated invariant T cells (MAIT cells) are an example of such unconventional cells. In humans, they constitute between 1% and 8% of the peripheral blood T lymphocytes and are further enriched in mucosal tissues, mesenteric lymph nodes, and liver, where they can account for even 40% of all the T cells. MAIT cells recognize antigens in the context of major histocompatibility complex class I-related protein (MR1). Upon activation, they instantly release pro-inflammatory cytokines and mediate cytolytic function towards bacterially infected cells. As such, they have been a rapidly evolving research topic not only in the field of infectious diseases but also in the context of many chronic inflammatory diseases and, more recently, in immuno-oncology. Novel findings suggest that MAIT cells function could also be modulated by endogenous ligands and drugs, making them an attractive target for therapeutic approaches. In this review, we summarize the current understanding of MAIT cell biology, their role in health and disease and discuss their future potential in cancer immunotherapy. This is discussed through the prism of knowledge and experiences with invariant natural killer T cells (iNKT)—another prominent unconventional T cell subset that shares many features with MAIT cells

    It takes 'guts' to cause joint inflammation : role of innate-like T cells

    Get PDF
    Innate-like T cells such as invariant natural killer T (iNKT) cells and mucosal-associated T (MAIT) cells, characterized by a semi-invariant T cell receptor and restriction toward MHC-like molecules (CD1 and MR1 respectively), are a unique unconventional immune subset acting at the interface of innate and adaptive immunity. Highly represented at barrier sites and capable of rapidly producing substantial amounts of cytokines, they serve a pivotal role as first-line responders against microbial infections. In contrast, it was demonstrated that innate-like T cells can be skewed toward a predominant pro-inflammatory state and are consequently involved in a number of autoimmune and inflammatory diseases like inflammatory bowel diseases and rheumatic disorders, such as spondyloarthritis (SpA) and rheumatoid arthritis. Interestingly, there is link between gut and joint disease as they often co-incide and share certain aspects of the pathogenesis such as established genetic risk factors, a critical role for pro-inflammatory cytokines, such as TNF-α, IL-23, and IL-17 and therapeutic susceptibility. In this regard dysregulated IL-23/IL-17 responses appear to be crucial in both debilitating pathologies and innate-like T cells likely act as key player. In this review, we will explore the remarkable features of iNKT cells and MAIT cells, and discuss their contribution to immunity and combined gut–joint disease

    Does an NKT-cell-based immunotherapeutic approach have a future in multiple myeloma?

    Get PDF
    Natural killer T (NKT) cells constitute a unique subset of innate-like T lymphocytes which differ from conventional T cells by recognizing lipid antigens presented by the non-polymorphic major histocompatibility complex (MHC) I-like molecule CD1d. Despite being a relatively infrequent population of lymphocytes, NKT cells can respond rapidly upon activation with glycosphingolipids by production of cytokines which aim to polarize different axes of the immune system. Due to their dual effector capacities, NKT cells can play a vital role in cancer immunity, infection, inflammation and autoimmune diseases. It is believed that modulation of their activity towards immune activation can be a useful tool in anti-tumor immunotherapeutic strategies. Here we summarize the characteristics of NKT cells and discuss their involvement in immunosurveillance. Furthermore, an update is given about their role and the progress that has been made in the field of multiple myeloma (MM). Finally, some challenges are discussed that are currently hampering further progress

    A computational high-throughput screening approach of iNKT-agonists: a novel tool to find optimized iNKT cell ligands

    Get PDF
    Depending on the environment and the activating glycolipids, iNKT cells are known to induce T-helper 1 and/or T-helper 2 cytokines. This highly versatile nature makes these innate-like cells very interesting targets for immunomodulation. As many pathologies as well as physiological ageing are associated with altered immune responses, iNKT cells could play a role in new therapies. Many analogs of the glycolipid alpha-galactosylceramide (a-GalCer) are known to activate iNKT-cells through their interaction with CD1d-expressing antigen-presenting cells, inducing the release of Th1 and/or Th2 cytokines. The design of iNKT cell ligands with selective Th1 and Th2 properties requires refined structural insights. Therefore, the chemical space of 333 currently known iNKT activators, including several newly tested analogs, was visualized by more than 3000 chemical descriptors which were calculated for each individual analog. The immunological responses consisted of four different cytokines in five different test-systems. With these two information-sets, structure-activity models were developed using a system biology computational approach. We present highly sensitive and specific predictive models that can be further exploited as high-throughput instruments to in-silico screen potential glycolipids, thereby reducing the attrition rate

    Synthesis of C6â€Čâ€Č-modified α-C-GalCer analogues as mouse and human iNKT cell agonists

    Get PDF
    alpha-GalCer analogues that combine known Th1 polarizing C6''-modifications with a C-glycosidic linkage were synthesized. We employed a protecting group strategy that allowed the preparation of both saturated and unsaturated derivatives with variable C6''-substituents. Selected analogues demonstrate promising activity in mice. Interestingly, the introduction of a 6''-O-pyridinylcarbamoyl substituent to alpha-C-GalCer restores its antigenicity in human iNKT cells

    An in silico approach for modelling T-helper polarizing iNKT cell agonists

    Get PDF
    Many analogues of the glycolipid alpha-galactosylceramide (α-GalCer) are known to activate iNKT cells through their interaction with CD1d-expressing antigen-presenting cells, inducing the release of Th1 and Th2 cytokines. Because of iNKT cell involvement and associated Th1/Th2 cytokine changes in a broad spectrum of human diseases, the design of iNKT cell ligands with selective Th1 and Th2 properties has been the subject of extensive research. This search for novel iNKT cell ligands requires refined structural insights. Here we will visualize the chemical space of 333 currently known iNKT cell activators, including several newly tested analogues, by more than 3000 chemical descriptors which were calculated for each individual analogue. To evaluate the immunological responses we analyzed five different cytokines in five different test-systems. We linked the chemical space to the immunological space using a system biology computational approach resulting in highly sensitive and specific predictive models. Moreover, these models correspond with the current insights of iNKT cell activation by α-GalCer analogues, explaining the Th1 and Th2 biased responses, downstream of iNKT cell activation. We anticipate that such models will be of great value for the future design of iNKT cell agonists

    Synaptic Mitochondria Are Critical for Mobilization of Reserve Pool Vesicles at Drosophila Neuromuscular Junctions

    Get PDF
    SummaryIn a forward screen for genes affecting neurotransmission in Drosophila, we identified mutations in dynamin-related protein (drp1). DRP1 is required for proper cellular distribution of mitochondria, and in mutant neurons, mitochondria are largely absent from synapses, thus providing a genetic tool to assess the role of mitochondria at synapses. Although resting Ca2+ is elevated at drp1 NMJs, basal synaptic properties are barely affected. However, during intense stimulation, mutants fail to maintain normal neurotransmission. Surprisingly, FM1-43 labeling indicates normal exo- and endocytosis, but a specific inability to mobilize reserve pool vesicles, which is partially rescued by exogenous ATP. Using a variety of drugs, we provide evidence that reserve pool recruitment depends on mitochondrial ATP production downstream of PKA signaling and that mitochondrial ATP limits myosin-propelled mobilization of reserve pool vesicles. Our data suggest a specific role for mitochondria in regulating synaptic strength

    Enhanced TCR footprint by a novel glycolipid increases NKT-dependent tumor protection

    Get PDF
    NKT cells, a unique type of regulatory T cells, respond to structurally diverse glycolipids presented by CD1d. Although it was previously thought that recognition of glycolipids such as a-galactosylceramide (alpha-GalCer) by the NKT cell TCR (NKTCR) obeys a key-lock principle, it is now clear this interaction is much more flexible. In this article, we report the structure-function analysis of a series of novel 6 ''-OH analogs of alpha-GalCer with more potent antitumor characteristics. Surprisingly, one of the novel carbamate analogs, alpha-GalCer-6 ''-(pyridin-4-yl) carbamate, formed novel interactions with the NKTCR. This interaction was associated with an extremely high level of Th1 polarization and superior antitumor responses. These data highlight the in vivo relevance of adding aromatic moieties to the 6 ''-OH position of the sugar and additionally show that judiciously chosen linkers are a promising strategy to generate strong Th1-polarizing glycolipids through increased binding either to CD1d or to NKTCR

    ER stress in antigen‐presenting cells promotes NKT cell activation through endogenous neutral lipids

    Get PDF
    CD1d-restricted invariant natural killer T (iNKT) cells constitute a common glycolipid-reactive innate-like T-cell subset with a broad impact on innate and adaptive immunity. While several microbial glycolipids are known to activate iNKT cells, the cellular mechanisms leading to endogenous CD1d-dependent glycolipid responses remain largely unclear. Here, we show that endoplasmic reticulum (ER) stress in APCs is a potent inducer of CD1d-dependent iNKT cell autoreactivity. This pathway relies on the presence of two transducers of the unfolded protein response: inositol-requiring enzyme-1a (IRE1α) and protein kinase R-like ER kinase (PERK). Surprisingly, the neutral but not the polar lipids generated within APCs undergoing ER stress are capable of activating iNKT cells. These data reveal that ER stress is an important mechanism to elicit endogenous CD1d-restricted iNKT cell responses through induction of distinct classes of neutral lipids
    • 

    corecore