560 research outputs found

    Cognitive Components of Regularity Processing in the Auditory Domain

    Get PDF
    BACKGROUND: Music-syntactic irregularities often co-occur with the processing of physical irregularities. In this study we constructed chord-sequences such that perceived differences in the cognitive processing between regular and irregular chords could not be due to the sensory processing of acoustic factors like pitch repetition or pitch commonality (the major component of 'sensory dissonance'). METHODOLOGY/PRINCIPAL FINDINGS: Two groups of subjects (musicians and nonmusicians) were investigated with electroencephalography (EEG). Irregular chords elicited an early right anterior negativity (ERAN) in the event-related brain potentials (ERPs). The ERAN had a latency of around 180 ms after the onset of the music-syntactically irregular chords, and had maximum amplitude values over right anterior electrode sites. CONCLUSIONS/SIGNIFICANCE: Because irregular chords were hardly detectable based on acoustical factors (such as pitch repetition and sensory dissonance), this ERAN effect reflects for the most part cognitive (not sensory) components of regularity-based, music-syntactic processing. Our study represents a methodological advance compared to previous ERP-studies investigating the neural processing of music-syntactically irregular chords

    Effects of Unexpected Chords and of Performer's Expression on Brain Responses and Electrodermal Activity

    Get PDF
    BACKGROUND: There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates event-related brain potentials (ERPs), skin conductance responses (SCRs) and heart rate (HR) elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts played by the pianists (with emotional expression), we also created versions without variations in tempo and loudness (without musical expression) to investigate effects of musical expression on ERPs and SCRs. Compared to expected chords, unexpected chords elicited an early right anterior negativity (ERAN, reflecting music-syntactic processing) and an N5 (reflecting processing of meaning information) in the ERPs, as well as clear changes in the SCRs (reflecting that unexpected chords also elicited emotional responses). The ERAN was not influenced by emotional expression, whereas N5 potentials elicited by chords in general (regardless of their chord function) differed between the expressive and the non-expressive condition. CONCLUSIONS/SIGNIFICANCE: These results show that the neural mechanisms of music-syntactic processing operate independently of the emotional qualities of a stimulus, justifying the use of stimuli without emotional expression to investigate the cognitive processing of musical structure. Moreover, the data indicate that musical expression affects the neural mechanisms underlying the processing of musical meaning. Our data are the first to reveal influences of musical performance on ERPs and SCRs, and to show physiological responses to unexpected chords in naturalistic music

    Systematic classification of non-coding RNAs by epigenomic similarity

    Get PDF
    BACKGROUND: Even though only 1.5% of the human genome is translated into proteins, recent reports indicate that most of it is transcribed into non-coding RNAs (ncRNAs), which are becoming the subject of increased scientific interest. We hypothesized that examining how different classes of ncRNAs co-localized with annotated epigenomic elements could help understand the functions, regulatory mechanisms, and relationships among ncRNA families. RESULTS: We examined 15 different ncRNA classes for statistically significant genomic co-localizations with cell type-specific chromatin segmentation states, transcription factor binding sites (TFBSs), and histone modification marks using GenomeRunner (http://www.genomerunner.org). P-values were obtained using a Chi-square test and corrected for multiple testing using the Benjamini-Hochberg procedure. We clustered and visualized the ncRNA classes by the strength of their statistical enrichments and depletions. We found piwi-interacting RNAs (piRNAs) to be depleted in regions containing activating histone modification marks, such as H3K4 mono-, di- and trimethylation, H3K27 acetylation, as well as certain TFBSs. piRNAs were further depleted in active promoters, weak transcription, and transcription elongation regions, and enriched in repressed and heterochromatic regions. Conversely, transfer RNAs (tRNAs) were depleted in heterochromatin regions and strongly enriched in regions containing activating H3K4 di- and trimethylation marks, H2az histone variant, and a variety of TFBSs. Interestingly, regions containing CTCF insulator protein binding sites were associated with tRNAs. tRNAs were also enriched in the active, weak and poised promoters and, surprisingly, in regions with repetitive/copy number variations. CONCLUSIONS: Searching for statistically significant associations between ncRNA classes and epigenomic elements permits detection of potential functional and/or regulatory relationships among ncRNA classes, and suggests cell type-specific biological roles of ncRNAs

    A simple ocean bottom hydrophone with 200 megabyte data capacity

    Get PDF
    The Woods Hole Ocean Bottom Hydrophone instrument records the digitized output of a single hydrophone sensor at rates between 250 and 1200 samples per second with a dynamic range of 98 dB and can be deployed at depths to 600 meters. The unit's 200 megabyte disk recorder allows operation for periods up to 5 days. Designed for typical marine seismic refraction operations the unit is reliable and simple to deploy and recover. A detailed description is provided of the instrument design and application including transfer function, clock accuracy, data format, sample data and power requirements.Funding provided by the National Science Foundation under Grant Nos. OCE-9019918 and OCE-8917628

    Comparing the Processing of Music and Language Meaning Using EEG and fMRI Provides Evidence for Similar and Distinct Neural Representations

    Get PDF
    Recent demonstrations that music is capable of conveying semantically meaningful information has raised several questions as to what the underlying mechanisms of establishing meaning in music are, and if the meaning of music is represented in comparable fashion to language meaning. This paper presents evidence showing that expressed affect is a primary pathway to music meaning and that meaning in music is represented in a very similar fashion to language meaning. In two experiments using EEG and fMRI, it was shown that single chords varying in harmonic roughness (consonance/dissonance) and thus perceived affect could prime the processing of subsequently presented affective target words, as indicated by an increased N400 and activation of the right middle temporal gyrus (MTG). Most importantly, however, when primed by affective words, single chords incongruous to the preceding affect also elicited an N400 and activated the right posterior STS, an area implicated in processing meaning of a variety of signals (e.g. prosody, voices, motion). This provides an important piece of evidence in support of music meaning being represented in a very similar but also distinct fashion to language meaning: Both elicit an N400, but activate different portions of the right temporal lobe

    An Animal Model of Cutaneous Cyst Development Enables the Identification of Three Quantitative Trait Loci, Including the Homologue of a Human Locus (TRICY1)

    Get PDF
    Brief Summary Using inbred BN and LE/Stm rats susceptible and resistant, respectively, to chemically induced cutaneous cyst development we were able to further unveil the genetic architecture of inherited multiple cyst formation. N-methyl-N-nitrosourea-treated (BN x LE) F2 intercross rats proved to develop differential numbers of cutaneous cysts, demonstrating epidermal, trichilemmal and verrucous keratinization types. Male rats developed significantly more cysts per animal than females. QTL interval mapping yielded three loci on rat chromosomes 1, 8 and 11 (Ccd1, Ccd2, Ccd3) linked to cutaneous cyst formation. Ccd2 proved to be homologous to the human TRICY1 region which could further be narrowed down by genome comparison in both species. It contains 11 genes with evidence of expression in human keratinocytes.Non peer reviewe

    Quantification of Residual Germinal Center Activity and HIV-1 DNA and RNA Levels Using Fine Needle Biopsies of Lymph Nodes during Antiretroviral Therapy

    Full text link
    HIV-1 reservoirs are most often studied in peripheral blood (PB), but not all lymphocytes recirculate, particularly T follicular helper (Tfh) CD4+ T cells, as well as germinal center (GC) B cells, in lymph nodes (LNs). Ultrasound-guided fine needle biopsies (FNBs) from inguinal LNs and PB samples were obtained from 10 healthy controls (HCs) and 21 HIV-1-infected subjects [11 antiretroviral therapy (ART) naive and 10 on ART]. Tfh cells and GC B cells were enumerated by flow cytometry. HIV-1 DNA and cell-associated (CA) RNA levels in LNs and PB were quantified by real-time polymerase chain reaction. FNBs were obtained without adverse events. Tfh cells and GC B cells were highly elevated in ART-naive subjects, with a median GC B cell count >300-fold higher than HCs, but also remained higher in 4 out of the 10 subjects on ART. GC B cell counts and Tfh cell counts were highly correlated with each other, and also with activated T cells in LNs but not in blood. Levels of HIV-1 DNA and CA RNA viral burden in highly purified CD4+ T cells from FNBs were significantly elevated compared with those in CD4+ T cells from PB in the ART-naive group, but only trended toward an increase in the ART patients. FNBs enabled minimally invasive access to, and parallel measurement of residual activated T and B cells and viral burden within LNs in HIV-1-infected patients. These FNBs revealed significant GC activity that was not apparent from corresponding PB samples

    Structural Integration in Language and Music: Evidence for a Shared System.

    Get PDF
    In this study, we investigate whether language and music share cognitive resources for structural processing. We report an experiment that used sung materials and manipulated linguistic complexity (subject-extracted relative clauses, object-extracted relative clauses) and musical complexity (in-key critical note, out-of-key critical note, auditory anomaly on the critical note involving a loudness increase). The auditory-anomaly manipulation was included in order to test whether the difference between in-key and out-of-key conditions might be due to any salient, unexpected acoustic event. The critical dependent measure involved comprehension accuracies to questions about the propositional content of the sentences asked at the end of each trial. The results revealed an interaction between linguistic and musical complexity such that the difference between the subject- and object-extracted relative clause conditions was larger in the out-of-key condition than in the in-key and auditory-anomaly conditions. These results provide evidence for an overlap in structural processing between language and music
    corecore