124 research outputs found

    Density structure of Earth's lowermost mantle from Stoneley mode splitting observations

    Get PDF
    Advances in our understanding of Earth’s thermal evolution and the style of mantle convection rely on robust seismological constraints on lateral variations of density. The large-low-shear-wave velocity provinces (LLSVPs) atop the core–mantle boundary beneath Africa and the Pacific are the largest structures in the lower mantle, and hence severely affect the convective flow. Here, we show that anomalous splitting of Stoneley modes, a unique class of free oscillations that are perturbed primarily by velocity and density variations at the core–mantle boundary, is explained best when the overall density of the LLSVPs is lower than the surrounding mantle. The resolved density variations can be explained by the presence of post-perovskite, chemical heterogeneity or a combination of the two. Although we cannot rule out the presence of a ∼100-km-thick denser-than-average basal structure, our results support the hypothesis that LLSVPs signify large-scale mantle upwelling in two antipodal regions of the mantle

    A rockslide-generated tsunami in a Greenland fjord rang the Earth for 9 days

    Get PDF
    Climate change is increasingly predisposing polar regions to large landslides. Tsunamigenic landslides have occurred recently in Greenland, but none have been reported from the eastern fjords. In September 2023, we detected the start of a 9-day-long global 10.88 mHz (92 s) monochromatic very long-period (VLP) seismic signal, originating from East Greenland. We demonstrate how this event started with a 25×106 m3 glacial thinning-induced rock-ice avalanche plunging into Dickson Fjord, triggering a 200 m high tsunami. Simulations show the tsunami stabilized into a 7 m-high long-duration seiche with a near-identical frequency (11.45 mHz) and slow amplitude decay as the seismic signal. An oscillating, fjord-transverse single-force with a maximum amplitude of 5×1011 N reproduces the seismic amplitudes and their radiation pattern relative to the fjord, demonstrating how a seiche directly caused the 9-day-long seismic signal. Our findings highlight how climate change is causing cascading, hazardous feedbacks between the cryosphere, hydrosphere, and lithosphere

    Classifying elephant behaviour through seismic vibrations

    Get PDF
    Seismic waves — vibrations within and along the Earth’s surface — are ubiquitous sources of information. During propagation, physical factors can obscure information transfer via vibrations and influence propagation range [1]. Here, we explore how terrain type and background seismic noise influence the propagation of seismic vibrations generated by African elephants. In Kenya, we recorded the ground-based vibrations of different wild elephant behaviours, such as locomotion and infrasonic vocalisations [2], as well as natural and anthropogenic seismic noise. We employed techniques from seismology to transform the geophone recordings into source functions — the time-varying seismic signature generated at the source. We used computer modelling to constrain the propagation ranges of elephant seismic vibrations for different terrains and noise levels. Behaviours that generate a high force on a sandy terrain with low noise propagate the furthest, over the kilometre scale. Our modelling also predicts that specific elephant behaviours can be distinguished and monitored over a range of propagation distances and noise levels. We conclude that seismic cues have considerable potential for both behavioural classification and remote monitoring of wildlife. In particular, classifying the seismic signatures of specific behaviours of large mammals remotely in real time, such as elephant running, could inform on poaching threats

    In-flight degradation correction of SCIAMACHY UV reflectances and Absorbing Aerosol Index

    Get PDF
    In this paper we study the close relationship between the radiometric calibration of a satellite instrument and the Absorbing Aerosol Index (AAI) derived from the observed Earth reflectance. Instrument degradation of the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instrument in the ultraviolet wavelength range is examined by analyzing time series of global means of the AAI, making use of the experience that the global mean should be more or less constant when instrument degradation is absent. The analysis reveals the magnitude of the (scan angle dependent) instrument degradation of SCIAMACHY and also shows that currently available correction techniques are not able to correct the instrument degradation in a sufficient manner. We therefore develop and introduce a new method for degradation correction, which is based on the analysis of the time evolution of the global mean reflectance. Seasonal variations in the global mean reflectance, which mainly result from seasonal variations in scattering geometry and global cloud coverage, are separated from the time series in order to isolate the instrument degradation. Finally, we apply the derived reflectance correction factors to the SCIAMACHY reflectances and calculate the AAI to find that the effects of instrument degradation are reduced to within the 0.1 index point level. The derived AAI is also compared with the AAI based on other correction techniques. The proposed in-flight reflectance degradation correction method performs best in all aspects. © 2012 by the American Geophysical Union

    Acute and Chronic Effects of Particles on Hospital Admissions in New-England

    Get PDF
    Background: Many studies have reported significant associations between exposure to PM2.5PM_{2.5} and hospital admissions, but all have focused on the effects of short-term exposure. In addition all these studies have relied on a limited number of PM2.5PM_{2.5} monitors in their study regions, which introduces exposure error, and excludes rural and suburban populations from locations in which monitors are not available, reducing generalizability and potentially creating selection bias. Methods Using our novel prediction models for exposure combining land use regression with physical measurements (satellite aerosol optical depth) we investigated both the long and short term effects of PM2.5PM_{2.5} exposures on hospital admissions across New-England for all residents aged 65 and older. We performed separate Poisson regression analysis for each admission type: all respiratory, cardiovascular disease (CVD), stroke and diabetes. Daily admission counts in each zip code were regressed against long and short-term PM2.5PM_{2.5} exposure, temperature, socio-economic data and a spline of time to control for seasonal trends in baseline risk. Results: We observed associations between both short-term and long-term exposure to PM2.5PM_{2.5} and hospitalization for all of the outcomes examined. In example, for respiratory diseases, for every10-µg/m3^3 increase in short-term PM2.5PM_{2.5} exposure there is a 0.70 percent increase in admissions (CI = 0.35 to 0.52) while concurrently for every10-µg/m3^3 increase in long-term PM2.5PM_{2.5} exposure there is a 4.22 percent increase in admissions (CI = 1.06 to 4.75). Conclusions: As with mortality studies, chronic exposure to particles is associated with substantially larger increases in hospital admissions than acute exposure and both can be detected simultaneously using our exposure models

    Estimating PM 2.5 concentrations in Xi'an City using a generalized additive model with multi-source monitoring data

    Get PDF
    © 2015 Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi'an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5

    A rockslide-generated tsunami in a Greenland fjord rang Earth for 9 days

    Get PDF
    Climate change is increasingly predisposing polar regions to large landslides. Tsunamigenic landslides have occurred recently in Greenland (Kalaallit Nunaat), but none have been reported from the eastern fjords. In September 2023, we detected the start of a 9-day-long, global 10.88-millihertz (92-second) monochromatic very-long-period (VLP) seismic signal, originating from East Greenland. In this study, we demonstrate how this event started with a glacial thinning–induced rock-ice avalanche of 25 × 106 cubic meters plunging into Dickson Fjord, triggering a 200-meter-high tsunami. Simulations show that the tsunami stabilized into a 7-meter-high long-duration seiche with a frequency (11.45 millihertz) and slow amplitude decay that were nearly identical to the seismic signal. An oscillating, fjord-transverse single force with a maximum amplitude of 5 × 1011 newtons reproduced the seismic amplitudes and their radiation pattern relative to the fjord, demonstrating how a seiche directly caused the 9-day-long seismic signal. Our findings highlight how climate change is causing cascading, hazardous feedbacks between the cryosphere, hydrosphere, and lithosphere.acceptedVersio
    corecore