134 research outputs found

    Safety First? The Role of Emotion in Safety Product Betrayal Aversion

    Get PDF
    Consumers often face decisions about whether to purchase products that are intended to protect them from possible harm. However, safety products rarely provide perfect protection and sometimes betray consumers by causing the very harm they are intended to prevent. Examples include vaccines that may cause disease and air bags that may explode with such force that they cause death. Expanding research on betrayal aversion, this study examines the role of emotions in consumers\u27 tendency to choose safety options that provide less overall protection in order to eliminate a very small probability of harm due to safety product betrayal. In five studies we find that betrayal aversion is reduced and safer alternatives are selected when factors that dampen the emotional response to potential betrayals are introduced or taken into account. These factors include changing the betrayal from an action to an omission (study 1), introducing positive imagery (study 2), introducing visual representations of risk (study 3), making the decision for another rather than oneself (study 4), and intuitive thinking style (study 5)

    Canine Ependymoma: Diagnostic Criteria and Common Pitfalls

    Get PDF
    Reports of canine ependymoma are generally restricted to single case reports with tumor incidence estimated at 2% to 3% of primary central nervous system (CNS) tumors. While most commonly reported in the lateral ventricle, tumors can occur anywhere in the ventricular system and in extraventricular locations. Rosettes and pseudorosettes are a common histologic feature; however, these features can be mimicked by other CNS neoplasms. Thirty-seven potential ependymoma cases were identified in a retrospective database search of 8 institutions, and a histologic review of all cases was conducted. Of 37 cases, 22 candidate cases were further subjected to a consensus histologic and immunohistochemical review, and only 5 of 37 (13.5%) were conclusively identified as ependymoma. The neuroanatomic locations were the lateral ventricle (3/5), third ventricle (1/5), and mesencephalic aqueduct (1/5). Subtypes were papillary (4/5) and tanycytic (1/5). Histologic features included rosettes (5/5), pseudorosettes (5/5), ependymal canals (2/5), tanycytic differentiation (1/5), blepharoplasts (1/5), ciliated cells (1/5), and high nuclear to cytoplasmic ratio (5/5). Immunolabeling for GFAP (4/4) and CKAE1/3 (3/4) was found in pseudorosettes, rosettes, and scattered individual neoplastic cells. Diffuse but variably intense cytoplasmic S100 immunolabeling was detected in 3 of 4 cases. Olig2 intranuclear immunolabeling was observed in less than 1% of the neoplastic cells (3/3). Tumors that had pseudorosettes and mimicked ependymoma included oligodendroglioma, choroid plexus tumor, pituitary corticotroph adenoma, papillary meningioma, and suprasellar germ cell tumor. These findings indicate that canine ependymoma is an extremely rare neoplasm with histomorphologic features that overlap with other primary CNS neoplasms

    Investigation of the Epitaxial Graphene/p-SiC Heterojunction

    Full text link
    There has been significant research in the study of in-plane charge-carrier transport in graphene in order to understand and exploit its unique electrical properties; however, the vertical graphene–semiconductor system also presents opportunities for unique devices. In this letter, we investigate the epitaxial graphene/p-type 4H-SiC system to better understand this vertical heterojunction. The I–V behavior does not demonstrate thermionic emission properties that are indicative of a Schottky barrier but rather demonstrates characteristics of a semiconductor heterojunction. This is confirmed by the fitting of the temperature-dependent I–V curves to classical heterojunction equations and the observation of band-edge electroluminescence in SiC

    A portal of educational resources: providing evidence for matching pedagogy with technology

    Get PDF
    The TPACK (Technology, Pedagogy and Content Knowledge) model presents the three types of knowledge that are necessary to implement a successful technology-based educational activity. It highlights how the intersections between TPK (Technological Pedagogical Knowledge), PCK (Pedagogical Content Knowledge) and TCK (Technological Content Knowledge) are not a sheer sum up of their components but new types of knowledge. This paper focuses on TPK, the intersection between technology knowledge and pedagogy knowledge – a crucial field of investigation. Actually, technology in education is not just an add-on but is literally reshaping teaching/learning paradigms. Technology modifies pedagogy and pedagogy dictates requirements to technology. In order to pursue this research, an empirical approach was taken, building a repository (back-end) and a portal (front-end) of about 300 real-life educational experiences run at school. Educational portals are not new, but they generally emphasise content. Instead, in our portal, technology and pedagogy take centre stage. Experiences are classified according to more than 30 categories (‘facets’) and more than 200 facet values, all revolving around the pedagogical implementation and the technology used. The portal (an innovative piece of technology) supports sophisticated ‘exploratory’ sessions of use, targeted at researchers (investigating the TPK intersection), teachers (looking for inspiration in their daily jobs) and decision makers (making decisions about the introduction of technology into schools)

    Trapping phenomena in AlGaN and InAlN barrier HEMTs with different geometries

    Get PDF
    PAPER Trapping phenomena in AlGaN and InAlN barrier HEMTs with different geometries S Martin-Horcajo1, A Wang1, A Bosca1, M F Romero1, M J Tadjer1,2, A D Koehler2, T J Anderson2 and F Calle1 Published 11 February 2015 • © 2015 IOP Publishing Ltd Semiconductor Science and Technology, Volume 30, Number 3 Article PDF Figures References Citations Metrics 350 Total downloads Cited by 1 articles Export citation and abstract BibTeX RIS Turn on MathJax Share this article Article information Abstract Trapping effects were evaluated by means of pulsed measurements under different quiescent biases for GaN/AlGaN/GaN and GaN/InAlN/GaN. It was found that devices with an AlGaN barrier underwent an increase in the on-resistance, and a drain current and transconductance reduction without measurable threshold voltage change, suggesting the location of the traps in the gate-drain access region. In contrast, devices with an InAlN barrier showed a transconductance and a decrease in drain associated with a significant positive shift of threshold voltage, indicating that the traps were likely located under the gate region; as well as an on-resistance degradation probably associated with the presence of surface traps in the gate-drain access region. Furthermore, measurements of drain current transients at different ambient temperatures revealed that the activation energy of electron traps was 0.43 eV and 0.38 eV for AlGaN and InAlN barrier devices, respectively. Experimental and simulation results demonstrated the influence of device geometry on the observed trapping effects, since devices with larger gate lengths and gate-to-drain distance values exhibited less noticeable charge trapping effects

    A novel fluorescence-based assay for the rapid detection and quantification of cellular deoxyribonucleoside triphosphates

    Get PDF
    Current methods for measuring deoxyribonucleoside triphosphates (dNTPs) employ reagent and labor-intensive assays utilizing radioisotopes in DNA polymerase-based assays and/or chromatography-based approaches. We have developed a rapid and sensitive 96-well fluorescence-based assay to quantify cellular dNTPs utilizing a standard real-time PCR thermocycler. This assay relies on the principle that incorporation of a limiting dNTP is required for primer-extension and Taq polymerase-mediated 5–3′ exonuclease hydrolysis of a dual-quenched fluorophore-labeled probe resulting in fluorescence. The concentration of limiting dNTP is directly proportional to the fluorescence generated. The assay demonstrated excellent linearity (R2 > 0.99) and can be modified to detect between ∼0.5 and 100 pmol of dNTP. The limits of detection (LOD) and quantification (LOQ) for all dNTPs were defined as <0.77 and <1.3 pmol, respectively. The intra-assay and inter-assay variation coefficients were determined to be <4.6% and <10%, respectively with an accuracy of 100 ± 15% for all dNTPs. The assay quantified intracellular dNTPs with similar results obtained from a validated LC–MS/MS approach and successfully measured quantitative differences in dNTP pools in human cancer cells treated with inhibitors of thymidylate metabolism. This assay has important application in research that investigates the influence of pathological conditions or pharmacological agents on dNTP biosynthesis and regulation

    The DEEP Groth Strip Survey VI. Spectroscopic, Variability, and X-ray Detection of AGN

    Get PDF
    We identify active galactic nuclei (AGN) in the Groth-Westphal Survey Strip (GSS) using the independent and complementary selection techniques of optical spectroscopy and photometric variability. We discuss the X-ray properties of these AGN using Chandra/XMM data for this region. From a sample of 576 galaxies with high quality spectra we identify 31 galaxies with AGN signatures. Seven of these have broad emission lines (Type 1 AGNs). We also identify 26 galaxies displaying nuclear variability in HST WFPC2 images of the GSS separated by ~7 years. The primary overlap of the two selected AGN samples is the set of broad-line AGNs, of which 80% appear as variable. Only a few narrow-line AGNs approach the variability threshold. The broad-line AGNs have an average redshift of z~1.1 while the other spectroscopic AGNs have redshifts closer to the mean of the general galaxy population (z~0.7). Eighty percent of the identified broad-line AGNs are detected in X-rays and these are among the most luminous X-ray sources in the GSS. Only one narrow-line AGN is X-ray detected. Of the variable nuclei galaxies within the X-ray survey, 27% are X-ray detected. We find that 1.9+/-0.6% of GSS galaxies to V=24 are broad-line AGNs, 1.4+/-0.5% are narrow-line AGNs, and 4.5+/-1.4% contain variable nuclei. The fraction of spectroscopically identified BLAGNs and NLAGNs at z~1 reveals a marginally significant increase of 1.3+/-0.9% when compared to the local population.Comment: 29 pages, 8 figures, accepted for publication in ApJ

    Creation of an NCI comparative brain tumor consortium: informing the translation of new knowledge from canine to human brain tumor patients

    Get PDF
    On September 14–15, 2015, a meeting of clinicians and investigators in the fields of veterinary and human neuro-oncology, clinical trials, neuropathology, and drug development was convened at the National Institutes of Health campus in Bethesda, Maryland. This meeting served as the inaugural event launching a new consortium focused on improving the knowledge, development of, and access to naturally occurring canine brain cancer, specifically glioma, as a model for human disease. Within the meeting, a SWOT (strengths, weaknesses, opportunities, and threats) assessment was undertaken to critically evaluate the role that naturally occurring canine brain tumors could have in advancing this aspect of comparative oncology aimed at improving outcomes for dogs and human beings. A summary of this meeting and subsequent discussion are provided to inform the scientific and clinical community of the potential for this initiative. Canine and human comparisons represent an unprecedented opportunity to complement conventional brain tumor research paradigms, addressing a devastating disease for which innovative diagnostic and treatment strategies are clearly needed
    corecore